Метрологическая служба ПриСТ предлагает:

Москва: +7 495 777-55-91
Санкт-Петербург: +7 812 677-75-08
Екатеринбург: +7 343 317-39-99

ИНФОРМАЦИЯ » Статьи, публикации, обзоры » Электронные токовые шунты – новейшее слово в лабораторных из...

 
Электронные токовые шунты – новейшее слово в лабораторных измерениях

Автор / источник:

Корнеев С.А.


Издавалась:


Цены / заказ (модели):

Шунт токовый прецизионный - АКИП-7501...


Электронные токовые шунты
 

Электронные токовые шунты – новейшее слово в лабораторных измерениях

В статье рассматриваются современные лабораторные средства измерения – электронные токовые шунты, которые применяются в качестве образцовых средств измерений постоянного и переменного тока.

Корнеев С.А. ЗАО «ПриСТ»

Шунты токовые предназначены для расширения пределов измерения тока, измерения тока с повышенной точностью и в качестве ограничителей тока. Лабораторные токовые шунты характеризуются стабильным сопротивлением, низким температурным коэффициентом и широким диапазоном сопротивлений. Современные токовые шунты позволяют проводить измерения в цепях постоянного и переменного тока и обеспечивают широкий частотный диапазон. В настоящее время для прецизионных измерений применяются шунты с диапазоном частот до 100 кГц и точностью, которую ранее не могли обеспечить коммерчески доступные технологии производства шунтов.

Обычно, шунты представляют из себя набор низкоиндуктивных мер сопротивления и обеспечивают заявленную точность при номинальной нагрузке. С помощью лабораторных шунтов точные измерения можно выполнять в один этап. Ранее для этих целей требовались более сложные методы с использованием традиционных эталонов-переносчиков переменного и постоянного тока. Типичная схема определения параметров источников питания с использованием шунтов выглядит следующим образом (рис. 1):

Рис. 1. Структурная схема определения параметров источника питания

Рисунок 1. Структурная схема определения параметров источника питания

ЛАТР – линейный автотрансформатор
V1 – вольтметр напряжения питания.
V2 – вольтметр для определения выходного тока источника питания.
Rи – мера сопротивления - шунт.
RН – нагрузка электронная (реостат).

Электронная нагрузка, которая используется для задания определенного значения тока, не обеспечивает образцовой точности и в качестве образцового средства измерений используется токовый шунт. В этом случае, действительное значение тока в измерительной цепи определяется соотношением: Iизмi=UV2/RИ.

Также как и электронные нагрузки, которые пришли на смену механическим реостатам, электронные шунты представляют из себя набор механических мер сопротивления, размещенных в одном лабораторном приборе, электронно-коммутируемых с измерительной цепью. Электронные шунты имеют индикаторы для отображения результатов измерений или выходы для подключения измерительного оборудования.

Рассмотрим несколько вариантов современных лабораторных шунтов.

АКИП-7501 (рис. 2) выполнен в моноблочном корпусе с 4-я входными терминалами на передней панели для подключения к измерительным шунтам. Два гнезда терминала «CURRENT INPUT» (красный/черный) обеспечивают последовательное подключение выбранного сопротивления измерительного шунта к нагрузке. Подключение может быть выполнено при помощи соединителя типа «банан» (4мм) или винтовой клеммой типа «под зажим». Максимальное допустимое значение протекающего тока указано на передней панели прибора над соответствующим терминалом. Переключатель пределов RANGE при помощи 5 клавиш служит для выбора потенциальных выходных клемм VOLTAGE OUTPUT (пределы падения напряжения) и коммутации к цепи встроенного амперметра (4 1/2 разряда). В этом же поле панели осуществляется выбор режима шунта: АС (при активации загорается сигнальная лампа) /DC (лампа не горит). Текущее значение тока на шунте можно измерить с помощью встроенного цифрового амперметра, имеющего 4 1/2 разряда. Подключение шунтов к потенциальному выходу и встроенному амперметру производится при помощи кнопочного переключателя. При этом не обязательно отключать нагрузку от источника тока при переключении предела, т. к. все шунты изолированы друг от друга.

Рисунок 2. Внешний вид токового шунта АКИП-7501

Рисунок 2. Внешний вид токового шунта АКИП-7501

АКИП -7501 обеспечивает прецизионную точность. Предел допускаемой основной погрешности шунта по сопротивлению составляет от 0,01 % до 0,02 % (в зависимости от предела) на постоянном токе и 0,1 % на переменном токе (до 400 Гц). Такая точность обеспечивается передачей единицы измерения от Государственных первичных эталонов по поверочной схеме. Данные шунты внесены в Госреестр СИ и рекомендованы к применению в качестве эталонного оборудования.

Следующая модель электронного токового шунта – PCS-71000 (рис. 3) – новая разработка от компании «GOOD WILL INSTRUMENT».

Рисунок 3. Внешний вид токового шунта PCS-71000

Рисунок 3. Внешний вид токового шунта PCS-71000

Этот электронный шунт сочетает в себе сразу 3 прибора – многозначную меру сопротивления, амперметр 6 1/2 разряда и вольтметр 6 1/2 разряда. Данный шунт имеет тот же набор прецизионных мер сопротивления, что и его аналог АКИП-7501 – 5 эталонных мер сопротивления 0,001 Ом, 0,01 Ом, 0,1 Ом, 1 Ом, 10 Ом, программно коммутируемых с измерительной цепью. Предел допускаемой основной погрешности шунта по сопротивлению составляет от 0,01 % до 0,02 % на постоянном токе и 0,1 % на переменном токе (до 400 Гц)- аналогично с АКИП-7501. Однако, есть ряд существенных отличий в метрологических и конструктивных параметрах. В отличие от АКИП-7501 шунт PCS-71000 имеет более высокий верхний предел по току 300 А, который разбит на 5 поддиапазонов 300 А, 30 А, 3 А, 300 мА, 30 мА. Диапазоны 3 А, 300 мА, 30 мА имеют один выход, на который программно коммутируются меры сопротивлений. Такое решение, казалось бы, повышает риск выбрать не тот диапазон и вывести прибор из строя, если подать ток, превышающий выбранный предел. Но разработчики предусмотрели ряд защитных функций, которые предотвращают ошибку оператора. Выбор предела по току прибор может осуществлять автоматически, переключая при этом требуемое сопротивление, если ток будет превышать допустимое значение. Высокоамперный выход выведен на заднюю панель. Подключение осуществляется стандартным способом – измерительный провод крепится к клеммам болтовым соединением (рис. 4).

Рисунок 4. Схема подключения измерительного высокоамперного измерительного кабеля

Рисунок . Схема подключения измерительного высокоамперного измерительного кабеля

В результате, шунт PCS-71000 получился более компактный, чем АКИП-7501. Разработчики сделали конструкцию ровно в половину 19” стойки. Таким образом, используя опцию монтажа в 19” стойку можно компактно организовать рабочее место поверителя (рис. 5).

Рисунок 5. Схема монтажа в 19” стойку: одного прибора (сверху) и двух приборов (снизу)

Рисунок 5. Схема монтажа в 19” стойку: одного прибора (сверху) и двух приборов (снизу)

PCS-71000 оснащен полнофункциональными высокоразрядными амперметром и вольтметром. Для вольтметра предусмотрены отдельные входы, рассчитанные на напряжение 600 В для сигнала переменной частоты и до 1000 В постоянного напряжения. Индикаторы тока и напряжения имеют 6 1/2 разряда и могут использоваться для проведения комплексного тестирования параметров источников питания.

На рис. 6 представлена типовая схема подключения шунта в режиме тестирования источника питания.

Рисунок 6. Схема включения PCS-71000 при тестировании источника питания
  1. Измерение напряжения на клеммах нагрузки
  2. Измерение напряжения на клеммах источника
  3. Измерение тока

Рисунок 6. Схема включения PCS-71000 при тестировании источника питания

Помимо встроенного амперметра, для проведения прецизионных измерений в PCS-71000 предусмотрен потенциальный выход, аналогично с АКИП-7501. Встроенные вольтметр и амперметр имеют настройки, как и более функциональные средства измерений – универсальные вольтметры. При считывании показаний пользователь может задать число усреднений, выбрать разрядность индикатора, а также настроить скорость отображения результатов измерений на индикаторе.

Также, большим плюсом шунта является наличие интерфейсов дистанционного управления. PCS-71000 имеет интерфейсы USB и GPIB, что позволяет его использовать в автоматизированных измерительных системах.

Все шунты характеризуются коэффициентом мощности. С повышением протекающего через шунт тока, изменяется его номинальное сопротивление. Конструктив и типы используемых компонентов в данных моделях разные, но зависимость изменения сопротивления от мощности в обеих моделях линейная, и не превышает пределов допускаемой основной погрешности шунта по сопротивлению.

Для точных электроизмерений немаловажное значение имеют не только технические характеристики СИ, но и соединительные кабели, как самостоятельный элемент схем коммутации при тестировании. В области электроизмерений подход к конструкции кабельной сборки или перехода должен осуществляться исходя из специфики и условий его применения. Компания «ПриСТ» рекомендует пользоваться измерительными проводами только известных торговых марок, таких как Pomona, США. Американская компания Pomona, имеющая более чем 50-летний опыт в производстве аксессуаров к измерительным приборам учитывает все современные требования к такой продукции, а в производстве использует только высококачественные материалы. Для обеспечения предела диапазона по току до 250 А предлагается опция специального высокостабильного по сопротивлению кабеля (рис. 7).

Рисунок 7. Кабель для подключения нагрузки до 250 А производства Pomona (США)

Рисунок 7. Кабель для подключения нагрузки до 250 А производства Pomona (США)

Электронные токовые шунты АКИП-7501 и PCS-71000 являются новейшими разработками в области точных электроизмерений и обладают всеми достоинствами современных лабораторных средств измерений:

  • высокая точность измерений
  • компактное исполнение
  • универсальность и многофункциональность
  • возможность дистанционного управления (PCS-71000)

    Отсутствие ошибок и опечаток не гарантируется. Технические характеристики средств измерений неутвержденного типа могут быть изменены без предупреждения.
    На нашем сайте работает система коррекции ошибок Orphus. Обнаружив неточность в тексте, выделите ее и нажмите Ctrl+Enter. Сообщение об ошибке будет получено администратором сайта. Спасибо за помощь!