

ГЕНЕРАТОРЫ СИГНАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ

АКИП-3433/1, АКИП-3433/2, АКИП-3433/3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Оглавление

1	BBE	ДЕНИЕ	5
	1.1. Ин	формация об утверждении типа СИ:	6
	1.2. Ин	формация о версии программного обеспечения	
	(проши	вки) прибора	6
	Номер ве	ерсии (идентификационный номер ПО) -не ниже v 1.01	6
2	HA3	НАЧЕНИЕ	. 7
	2.1 Oc	новные функциональные возможности генераторов серии АКИГ	1
	3433		7
3	TEXH	НИЧЕСКИЕ ХАРАКТЕРИСТИКИ	8
	3.1 Вы	ходные параметры сигнала	8
	3.2 Вы	ходной уровень сигнала	8
	3.3 Ча	стотные параметры стандартных форм сигналов	9
	3.3.1	Сигнал синусоидальной формы:	9
	3.3.2	Сигнал прямоугольной формы	9
	3.3.3	Сигнал пилообразной/треугольной формы	. 10
	3.3.4	Сигнал импульсной формы	. 10
	3.3.5	Сигнал формы белого шума	. 10
	3.3.6	Сигнал произвольной формы	. 10
	3.3.7	Сигнал формы ПСДП	. 11
	3.3.8	Сигнал формы с частотными компонентами (гармоническая	
	форма)	11
	3.4 Mo	, ДVЛЯЦИИ	11
	3.4.1	Амплитудная модуляция (АМ)	. 11
	3.4.2	Частотная модуляция (ЧМ)	. 12
	3.4.3	Фазовая модуляция (ФМ)	. 12
	3.4.4	Амплитудная модуляция с двумя боковыми полосами (DSB-AM)12
	3.4.5	Амплитудная манипуляция ASK	.12
	3.4.6	Частотная манипуляция FSK	. 12
	3.4.7	Фазовая манипуляция PSK	13
	3.4.8	Трехпозиционная частотная манипуляция (3FSK)	13
	3.4.9	Четырехпозиционная частотная манипуляция (4FSK)	13
	3.4.10	Лвоичная фазовая манипуляция (BPSK)	14
	3.4.11	Квалратурная фазовая манипуляция (OPSK)	14
	3.4.12	Осцилляционная манипуляция (OSK)	14
	3.4.13	Суммирующая молуляция (SUM)	14
	3.4.14	Квалратурная амплитулная молуляция (ОАМ)	14
	3.4.15	Широтно- импульсная молуляция (PWM)	15
	3.4.16	Качание по частоте ГКЧ(SWFFP)	15
	3.4.17	Пакетный режим (N-ПИКЛ)	15
	3.4.18	Пифровые протоколы	15
	35 Ha	стотомер	16
	3.6 Co	пряжение и объелинение каналов	16
	361	Сопряжение по частоте	16
	362	Сопряжение по амплитуле	16
	363	Сопряжение по фазе	16
	37 Па		16
		ранстры дополнительных входов / выходов	17
۵	.	цие данные полнование и толькование и толькование и толькование и толькование и толькование и толькование и тол ГАВ КОМПЛЕКТА	⊥/ 1 Q
4			10
5	5 1 To		10
	5.2 04	и определения	10
	J.Z СИ	моолы и предупреждения оезопасности	тЭ

	5.3	Общ	ие требования по технике безопасности	19
	5.4	Знак	и на корпусе прибора	19
6	H	IA3H/	АЧЕНИЕ ОРГАНОВ УПРАВЛЕНИЯ И ИНДИКАЦИИ	21
	6.1	Пере	едняя панель	21
	6.2	Задн	іяя панель	23
	6.3	Опис	сание сенсорного дисплея	24
7	Γ	юдго	ОТОВКА ГЕНЕРАТОРА К РАБОТЕ	28
	7.1	Общ	ий осмотр	28
	7.2	Осмо	отр повреждений при транспортировке	28
	7.3	Осмо	отр принадлежностей	28
~	/.4	Осмо	отр прибора	28
9	b	A30E	ЗЫЕ ОПЕРАЦИИ	29
	9.1	наст	роика выходных сигналов стандартнои формы	29
	9.1	. ГУ СОРИ		. 29
	9.1	. Z Y	Становка амплитуды выходного сигнала	. 29
	9.1		становка постоянного напряжения смещения выходного	20
		нала и	истриовка сисирала прамоусов цой форми и корфанионта	. 50
	220	.4 J	становка сигнала прямоутольной формы и коэффициента	31
	9 1	5 +	Частройки параметров сигнала импульсной формы	. 31
	9.1	.5 I	астройки паралетров сигнала импульеной формы	33
	9.1	.7 F	астройки сигнала писобразной /треугольной формы	. 33
	9.1	.8 ⊦	астройки сигнала белого шума	. 34
	9.1	.9 ⊦	астройки сигнала гармонической формы	. 35
	9.1	.10	Настройки сигнала формы псевдослучайной двоичной	
	пос	следов	зательности ПСДП (PRBS)	. 36
	9.1	.11	Настройка формы сигнала с наложением шума	. 37
	9.2	Допс	олнительные функции	38
	9.2	.1 ⊦	łастройка каналов	. 38
	9.2	.2 ⊦	lастройка связи (сопряжения) между каналами	. 39
	9.2	.3 C	Эбъединение каналов	.41
	9.2	.4 P	ежим частотомера	. 42
	9.2	.5 C	Системные установки	.44
	9.2	.6 C	Синхронизация нескольких приборов	.45
	9.3	Наст	ройка локальной сети	46
1	U P		ИРОВКА ПАРАМЕТРОВ ВЫХОДНОГО СИГНАЛА	48
	10.1	Режи	амы модуляции выходного сигнала	48
	10.	1.1	Амплитудная модуляция (АМ)	.40
	10.	1.2	Ферера модуляция (РМ)	. 33 67
	10.	1.5		-02 68
	10.	15	ASK (амплитулная манипуляция)	.00
	10.	1.6	FSK частотная манипуляция	. 79
	10.	1.7	РЅК фазовая манипуляция	. 85
	10.	1.8	ЗFSK трехпозиционная частотная манипуляция	.90
	10.	1.9	4FSK Четырехпозиционная частотная манипуляция)	.95
	10.	1.10	BPSK двоичная фазовая манипуляция	100
	10.	1.11	QPSK квадратурная фазовая манипуляция	106
	10.	1.12	OSK осцилляционная манипуляция	111
	10.	1.13	SUM Суммирующая модуляция	117
	10.	1.14	QAM квадратурная амплитудная модуляция	123
	10.	1.15	РWМ широтно-импульсная модуляция	129

10.2 Øor	ома выхолного сигнала качающейся частоты	
10.2.1	Включение режима ГКЧ	
10.2.2	Настройки начальной и конечной частоты качания	
10.2.3	Настройка режима качания частоты	
10.2.4	Настройка времени ГКЧ	
10.2.5	Выбор источника запуска режима ГКЧ	138
10.2.6	Настройка выхода источника запуска режима ГКЧ	
10.2.7	Запуск режима ГКЧ по фронту импульса	
10.3 Φor	риа сигнала в пакетном режиме	
10.3.1	Включение пакетного режима	
10.3.2	Выбор типа пакета	
10.3.3	Начальная фаза пакетов	
10.3.4	Период пакетной передачи	
10.3.5	Подсчет пакетов	
10.3.6	Выбор источника запуска	
10.3.7	Выход синхронизации	150
10.3.8	Синхронизация по фронту	150
10.4 Φ οι	ома сигнала произвольной формы	154
10.4.1	Включение режима вывода сигнала произвольной фо	рмы 154
10.4.2	Режим поточечного вывода /режим DDS	155
10.4.3	Выбор произвольной формы сигнала	156
10.4.4	Создание и редактирование сигнала произвольной ф	ормы с
помощь	ю программного обеспечения АWP	164
10.5 Сиг	налы цифровых протоколов	164
10.5.1	Протокол SPI	164
10.5.2	Цифровой протокол IIC	168
10.5.3	Протокол UART	
11 СИСТ	ЕМНЫЕ СООБЩЕНИЯ И УСТРАНЕНИЕ НЕИСПРАВНО	ОСТЕЙ174
12 TEXH	ИЧЕСКОЕ ОБСЛУЖИВАНИЕ	175
12.1 Выб	бор напряжения питающей сети	
12.2 Ухо	д за внешней поверхностью осциллографа.	
12.3 OGH	ювления программной прошивки прибора	
13 ПРАВ	ВИЛА ХРАНЕНИЯ	175
13.1 Kpa	тковременное хранение	
13.2 Дли	тельное хранение	
14 ГАРА	НТИИНЫЕ ОБЯЗАТЕЛЬСТВА	176
15 ПРИЈ	1ОЖЕНИЕ А: ЗАВОДСКИЕ НАСТРОЙКИ ГЕНЕРАТОР	ОВ АКИП
3433		177
16 ПРИЈ	1ОЖЕНИЕ Б :РУКОВОДСТВО ПО ПРОГРАММИРОВАН	НИЮ 180

1 ВВЕДЕНИЕ

Настоящее руководство по эксплуатации (РЭ) предназначено для лиц, работающих с прибором, а также для обслуживающего и ремонтного персонала.

РЭ включает в себя все данные о приборе, указания по работе.

РЭ содержит сведения о генераторах специальной формы серии **АКИП-3433/1**, **АКИП-3433/2**, **АКИП-3433/3**.

Данное руководство по эксплуатации (РЭ) используется для всех моделей серии генераторов сигналов специальной и произвольной формы **АКИП-3433** (в дальнейшем Генератор или прибор).

Линейка представлена 3 моделями генераторов: **АКИП-3433/1, АКИП-3433/2, АКИП-3433/3.** Генераторы данной серии имеют **четыре** полностью независимых канала, обладают одинаковой функциональностью и технические параметрами, но отличающихся друг от друга частотным диапазоном выходных сигналов. См Табл 1.1. и Табл 3.1.2

Генераторы серии АКИП-3433 имеют удобный интерфейс управления и улучшенные характеристики, используют технологию прямого цифрового синтеза (DDS).

Генераторы АКИП-3433 оснащены встроенным частотомером до 800 МГц.

Генераторы оснащены аппаратным интерфейсом USB для реализации функции дистанционного управления.

Примечание: В связи с постоянной работой по совершенствованию изделия или его программного обеспечения, повышающей его надежность и улучшающей условия эксплуатации, в конструкцию могут быть внесены незначительные изменения, не отражённые в настоящем издании.

Содержание данного **Руководства по эксплуатации** не может быть воспроизведено в какой-либо форме (копирование, воспроизведение и др.) в любом случае без предшествующего разрешения компании изготовителя или официального дилера.

ΠΑΡΑΜΕΤΡ	AK 3433/	ИП- 1	АКИП- 3433/2		АКИП- 3433/3	
	KAH 1,2	КАН 3,4	KAH 1,2	KAH 3,4	KAH 1,2	KAH 3,4
Максимальная частота	350 МГЦ	160МГЦ	500 МГЦ	200МГЦ	600МГЦ	200МГЦ
Частота дискретизации	2,5 Гвыб/с	625 Мвыб/с	2,5 Гвыб/С	625 Мвыб/С	2,5 Гвыб/С	625 Мвыб/С
Разрешение по вертикали	14 бит	16 бит	14 бит	16 бит	16 бит	16 бит
Произвольная глубина волны	8pts- 64Mpts	8кpts-	8pts- 64Mpts	8кpts-	8pts- 64Mpts	8кpts-
Форма сигнала	СИНУСОИДАЛЬНАЯ, КВАДРАТНАЯ, РАМПА, ИМПУЛЬС, ГАРМОНИКА, ШУМ, PRBS, ПОСТОЯННЫЙ ТОК, ПРОИЗВОЛЬНАЯ ВОЛНА					ИМПУЛЬС, ЗВОЛЬНАЯ
Режим работы	ПРОДОЛЖЕНИЕ, МОДУЛЯЦИЯ, РАЗВЕРТКА, СЕРИЯ, СЧЕТЧИ ЧАСТОТЫ, ПРОТОКОЛ				СЧЕТЧИК	
Тип модуляции	AM, FM, P QPSK, OSł	M, DS BAM <, PWM, SU	, QAM, AS M	K, FSK, 3FS	SK, 4FSK, I	PSK, BPSK,

Таблица 1.1

Внимание:

2. В соответствии с ГК РФ (ч.IV, статья 1227, п. 2): «Переход права собственности на вещь не влечет переход или предоставление интеллектуальных прав на результат интеллектуальной деятельности».

Изготовитель оставляет за собой право вносить в схему и конструкцию прибора непринципиальные изменения, не влияющие на его технические данные. При небольшом количестве таких изменений, коррекция эксплуатационных документов не проводится.

1.1. Информация об утверждении типа СИ:

Генераторы специальной формы **АКИП-3433/1, АКИП-3433/2, АКИП-3433/3.** Номер в Государственном реестре средств измерений: 94383-25. Срок действия: 17.01.2030.

Методика поверки: МП-ПР-35-2024 «ГСИ. Генераторы сигналов специальной формы АКИП-3433. Методика поверки».

Интервал между поверками: 1 год.

1.2. Информация о версии программного обеспечения (прошивки) прибора

Номер версии (идентификационный номер ПО) -не ниже v 1.01 Для просмотра версии ПО выполните следующее:

Нажмите кнопку **Utility**, далее по вкладке **System** появляются сведения о приборе, строка **Software Version**, считайте номер версии

Настоящее краткое руководство включает необходимые сведения по технике безопасности и установке генераторов специальной формы серии **АКИП-3433/1**, **АКИП-3433/2**, **АКИП-3433/3**., а также основы эксплуатации, что позволяет пользователю приступить к работе с прибором.

Генератор сигналов специальной формы серии **АКИП-3433** предназначен для воспроизведения периодических сигналов наиболее распространенных форм.

Обеспечивают формирование сигналов синусоидальной и специальной формы с возможностью генерации импульсного сигнала, а также сигналов произвольной формы.

Генератор является устройством прямого цифрового синтеза (DDS) и позволяет воспроизводить любой сигнал, описанный и занесенный в память прибора.

Использование прямого цифрового синтеза и максимального разрешения по частоте 1 мкГц, делает генераторы серии **АКИП-3433** универсальным решением, способным удовлетворить требования к измерительной аппаратуре в настоящее время и на перспективу.

2.1 Основные функциональные возможности генераторов серии АКИП 3433

• Стандартный 4-х канальный режим генерирования сигналов

• 4 выходных канала могут быть внутренними/внешними модулирующими внутренними/внешними/ручными соответственно или одновременно

• 9 основных выходных форм сигнала: синусоидальная волна, квадратная волна, треугольная волна, импульсная волна, гармоническая волна, белый шум

• Выходные сигналы PRBS (псевдослучайная двоичная последовательность), постоянный ток, сигналы произвольной формы

• Максимальная частота дискретизации 2,5 ГВыб/с, вертикальное разрешение АЦП 16 бит/14 бит

• Выходной синусоидальный сигнал : /350 МГц/500 МГц/600 МГц, в полном диапазоне с разрешением 1 мкГц

• Выходной прямоугольный сигнал:120МГц/160МГц/200МГц, минимальное время фронта: в пределах 1,5нс, регулируемая скважность,

• Выходной импульсный сигнал: 120 МГц/160 МГц/200 МГц, широкий динамический диапазон, высокая точность, регулируемое время нарастания/спада фронта импульса, регулируемая скважность,

• Выходной гармонический сигнал: число гармоник от 2 до 16, фаза, амплитуда, независимые и регулируемые

• Максимальный размах выходного сигнала: 20 В пик пик

• Большое количество видов модуляции: AM, FM, PM, DSB-AM, QAM, ASK, FSK, 3FSK, 4FSK, PSK, BPSK, QPSK, OSK, PWM,SUM

• Режим формирования выходного сигнала качающейся частоты (свипирования): качание -линейное, логарифмическое, пошаговое, по списку

• Длина памяти произвольного сигнала 8 Б ~64 МБ, поддержка функций pointby-point и DDS

• Более 200 типов сигналов произвольной формы стандартно хранится в энергонезависимой цифровой памяти.

• Хранение файла состояния прибора размером 16 ГБ (опционально) или размером 20 МБ файла в формате (.bsv или.csv)

• Восстановление состояние прибора из файлов профилей (.bsv или.csv) и файлы приборов, хранящиеся на USB внешнем носителе.

• Выходные сигналы цифровых протоколов: SPI, IIC, UART,

• Вывод SNR (отношение сигнал/шум) одним нажатием кнопки,

- Регулируемая полоса пропускания шумов
- Частотомер : измерение от 100 до 800 МГц

• Независимый ввод и вывод источника тактовой частоты 10 МГц

• Мощный программный и произвольный редактор форм сигналов с помощью хост-компьютера,

• 10,1-дюймовый емкостный сенсорный экран, разрешение 1280*800 т д

• Стандартный интерфейс конфигурации: USB Host, USB Device, LAN,

• Удобство использования многофункциональной ручки и цифровой клавиатуры

3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Выходные параметры сигнала

3.1.1 Число каналов: 4

Выходные каналы полностью независимы и позволяют производить отдельную настройку частотных и амплитудных параметров по каждому из каналов.

3.1.2 Частотные параметры выходного сигнала

Таблица 3.1.2

ДИАПАЗОН ЧАСТОТ	АКИП-3	3433/1	АКИП-	3433/2	АКИП-З	3433/3
ВЫХОДНОГО СИГНАЛА	KAH 1,2	KAH 3,4	KAH 1,2	КАН 3,4	KAH 1,2	KAH 3,4
СИНУСОИДАЛЬНАЯ ФОРМА	1мкГц -	1мкГц -	1мкГц -	1мкГц	1мкГц	1мкГц
	350 МГц	160МГц	500 МГц	200МГц	600МГц	200МГц
ПРЯМОУГОЛЬНОЙ ФОРМА	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц
	120МГц	160МГц	200МГц	50 МГц	60МГц	60МГц
ПИЛООБРАЗНАЯ,	1мкГц	1мкГц .	1мкГц	1мкГц	1мкГц	1мкГц
ТРЕУГОЛЬНАЯ ФОРМА	20МГц	8МГц	30МГц	10МГц	30МГц	10МГц
ОДИНОЧНЫЙ	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц
ИМПУЛЬСНЫЙ СИГНАЛ	120МГц	50МГц	160МГц	60МГц	200МГц	60МГц
БЕЛЫЙ ШУМ	1мГц	1мГц	1мкГц	1мГц	1мГц	1мГц
	350 МГц	160 МГц	500 МГц	200 МГц	600 МГц	200 МГц
ПРОИЗВОЛЬНАЯ ФОРМА	1 мкГц					
(DDS)	80 МГц	500 МГц	100 МГц	60 МГц	100 МГц	60 МГц

3.1.3 Разрешающая способность при установке частоты сигнала: 1 мкГц

3.1.4 Пределы допускаемой относительной погрешности установки частоты (боп), Гц:

Стандартное исполнение: ±1×10-6

3.1.5 Максимальная скорость выборки (синусоидальная форма): 2,5 Гвыб/с /625 Мвыб/с

3.1.6 Длина памяти сигнала произвольной формы : 64 МБ (КАН1,2)/ 8 КБ (КАН 3,4)64 К точек

3.1.7 Разрядность ЦАП: 14 / 16 бит

3.1.8 Выходные коннекторы: BNC

3.2 Выходной уровень сигнала

3.2.1 Диапазон установки уровня смещения постоянного напряжения:

на нагрузке 50 Ом: ±5 Впик-пик;

• на высокоомном выходе: ±10 Впик-пик

3.2.2 Пределы допускаемой абсолютной погрешности установки уровня постоянного смещения:

 \pm (1% UDC \pm 1 мВ уровня сигнала), где

UDC - установленное значение уровня постоянного смещения на генераторе, В

		СН	1,2		CH	3,4	
		АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3
Выходной уровень		≤40 МГц:	2 мВ _{пик-пик}	20 В _{пик-пик}	≤20 МГц	: 2 мВ _{пик-пи}	ик 20 Впик-
высокоомпом выходе		≤120 MГц;	: 2 мВ _{пик-пи}	_к 10 В _{пик-}	^{пик} ≤80 МГц:	2 мВ _{пик-пик}	10 В _{пик-пик}
		ПИК			-		
		≤160 МГц:	2 мВ _{пик-пик}	5 В _{пик-пик}	≤120 МГц	: 2 мВ _{пик-пи}	_к 5 В _{пик-пик}
		≤300 МГц:	2 мВ _{пик-пик}	4 В _{пик-пик}	≤200 МГц	: 2 мВ _{пик-пи}	_к З В _{пик-пик}

3.2.3 Диапазон установки выходного уровня:

	≤400 МГц: 2 мВ _{пик-пик} 2,5 В _{пик-}	
	пик	
	≤500 МГц: 2 мВ _{пик-пик} 1,5 В _{пик-}	
	пик	
	≤600 МГц: 2 мВ _{пик-пик} 1,0 В _{пик-}	
	пик	
Выходной уровень на	≤40 МГц: 1 мВ _{пик-пик} 10 В _{пик-}	≤20 МГц: 1 мВ _{пик-пик} 10 В _{пик-}
нагрузке 50 Ом	пик	ПИК
	≤120 МГц: 1 мВ _{пик-пик} 5 В _{пик-пик}	≤80 МГц: 1 мВ _{пик-пик} 5 В _{пик-пик}
	≤160 МГц: 1 мВ _{пик-пик} 2,5 В _{пик-}	≤120 МГц:1 мВ _{пик-пик} 2,5 В _{пик-}
	пик	пик
	≤300 МГц: 1 мВ _{пик-пик} 2 В _{пик-пик}	\leq 200 МГц: 1 мВ _{пик-пик} 2 В _{пик-пик}
	≤400 МГц: 1 мВ _{пик-пик} … 1,25	
	В _{пик-пик}	
	≤500 МГц: 1 мВ _{пик-пик} 0,75 В _{пик-}	
	пик	
	≤600 МГц: 1 мВ _{пик-пик} 0,5 В _{пик-}	
	пик	

3.2.4 Пределы допускаемой абсолютной погрешности установки уровня сигналов (синусоидальная форма, 0 В, 1 кГц, отклонение >10мВпик-пик), В:

±(1%·|U_{уст}| + 1 мВ), где

U_{уст} – установленное напряжение на генераторе, В

3.3 Частотные параметры стандартных форм сигналов

3.3.1 Сигнал синусоидальной формы:

	KAH 1,2 KAH 3,4							
	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3		
Диапазон частот	1мкГц 350МГц	1мкГц 500МГц	1мкГц 600МГц	1мкГц 160МГц	1мкГц 200МГц	1мкГц 200МГц		
Уровень гармоник в	≤10 M	Гц @ <-65	дБн	≤10	≤10 МГц @ <-65 дБн			
выходном сигнале, не	≤60 M	Гц @ <-60	дБн	≤80	МГц @ <-	60 дБн		
более:	≤150	МГц @ <-5	ОдБн	≤10	0 МГц @ <	:-55 дБн		
	≤200	МГц @ <-4	ОдБн	≤20	<u>0 МГц @ <</u>	:-40 дБн		
	≤600	МГц @ <-2	8 дБн					
Уровни негармонических	≤10 МГц @ <-70 дБн							
составляющих (при	>10 МГц @ <-70 дБн + 6дБ на октаву							
уровне не более 0 дБм)								
Суммарные	0,075	%						
гармонические искажения								
(О дБм/10 Гц-20кГц), не								
более								
Неравномерность АЧХ	≤10 M	≤10 МГц, 0,1 дБ						
(относительно 1 кГц, при	≤160 МГц, 0,2 дБ							
выходном напряжении 0,5	≤350 МГц, 0,4 дБ							
Вп-п, на нагрузке 50 Ом)	≤600 МГц, 0,8 дБ							
Плотность фазовых шумов	≤-125	≤-125 дБн/Гц при отстройке на 10 кГц от несущей 10						
(для уровня 0 дБм)	МГц							

3.3.2 Сигнал прямоугольной формы

	KAH :	1,2		КАН 3,4			
	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	
	3433/1	3433/2	3433/3	3433/1	3433/2	3433/3	
Диапазон частот	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц	
	120МГц	160МГц	200МГц	50 МГц	50МГц	60МГц	

Длительность фронта/ среза импульса (1Впик пик, 50 Ом, 1 кГц), не более	<2 нс	<2 нс	<1 нс	<6 нс	<6 нс	<5 нс		
Выброс на вершине импульса (1 МГц, 1 В, 50 Ом)	< 2%	< 2%						
Диапазон установки коэффициента заполнения для диапазонов частот:	0,000	0,00001% 99,99999%						
Длительность импульса (типичный уровень)	2,4 нс 8,0 нс							
Джиттер (1 МГц, 1 В, 50 Ом)	100 п	с						

3.3.3 Сигнал пилообразной/треугольной формы

	КАН		КАН 3,4				
	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	
	3433/1	3433/2	3433/3	3433/1	3433/2	3433/3	
Диапазон частот	1мкГц	1мкГц .	1мкГц	1мкГц	1мкГц	1мкГц	
	20МГц	30МГц	30МГц	8МГц	10МГц	10МГц	
Диапазон регулировки	0,00-	100,00%					
симметрии							
Нелинейность (максимум)	< 1%	(1 кГц, 1 Вп	ик пик, си	иметрия 5	50%),		

3.3.4 Сигнал импульсной формы

	КАН	1,2		KAH 3,4		
	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3
Диапазон частот	1мкГц 120МГц	1мкГц 160МГц	1мкГц 200МГц	1мкГц 50МГц	1мкГц 60МГц	1мкГц 60МГц
Диапазон установки длительности фронта/среза импульса	1,5 нс 10 кс	1,5 нс 10 кс	1,0 нс 10 кс	6,0 нс 2 кс	5,0 нс 2 кс	2,0 нс 10 кс
Выброс на вершине и паузе импульса (1 МГц, 1 В, 50 Ом)	< 2%	, 0				
Диапазон изменения коэффициента заполнения	0,000 99,99	0001% 9999%		0,0 99)00001% ,99999%	
Минимальная длительность импульса	2,4 нс			8,0) нс	
Джиттер (1 МГц, 1 В, 50 Ом)	100 r	ЪС				

3.3.5 Сигнал формы белого шума

	КАН	1,2		КАН 3,4			
	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	
Диапазон частот	3433/1	3433/2	3433/3	3433/1	3433/2	3433/3	
	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц	1мкГц	
	350 МГц	500 МГц	600 МГц	160 МГц	200 МГц	400 МГц	

3.3.6 Сигнал произвольной формы

	кап 3 _/ 4

	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	
Частота дискретизации (режим DDS)	2,5 Гвыб/с			625 Мвыб/с			
Частота дискретизации (режим Point by point)	1мквыб/с 350 Мвыб/с	1мквыб/с 500 Мвыб/с	1мквыб/с 600 Мвыб/с	′C			
Диапазон частот (DDS)	1 мкГц 80 МГц 1 мкГц 100 МГц			1 мкГц 50 МГц 1 мкГц 60 МГц			
Длина памяти	8 64 Мточек			800 (фикси значен	0 рованное ие)	точек	
Вертикальное разрешение	14 (бит	16 бит	16 бит			
Минимальная длительность фронта/ среза импульса	<4 нс						
Джиттер	<150 пс						
Энергонезависимая память	>200 ячеек форм сигнала						

3.3.7 Сигнал формы ПСДП

	КАН 1,2			KAł		
	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-
	3433/1	3433/2	3433/3	3433/1	3433/2	3433/3
Максимальная скорость	1мкб/с	1 мкб/с	120 Мб/с	1 мкб/с	1 мкб/с	60 Мб/с
передачи данных	80 Мб/с			40 Мб/с		
Диапазон установки	2,6	2,6 нс 1000 с		4,2 нс 1000 с		
длительности						
фронта/среза импульса						
Виды последовательностей	PN3,PN5,PN7,PN9,PN11,PN13			N13,PN15,PN17,PN19,PN21,PN		
	23,	PN25,PN27	,PN29,PN31	PNT33,		

3.3.8 Сигнал формы с частотными компонентами (гармоническая форма)

	KA	H 1,2		KAH	1 3,4			
	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3		
Диапазон частот	1 мкГц 175 МГц	1 мкГц 250 МГц	1 мкГц 300 МГц	1 мкГц 80 МГц	1 мкГц	100 МГц		
Диапазон установки числа гармоник	От	От 1 до 16 гармоник						
Тип	Неч	іетные, Чет	гные, Все, I	Пользовате	пьские			
Уровень сигнала	1мЕ	3 10 В _{пипк}	-пик					
	Установка уровня для выбранного частотного компонента (гармоники)							
Диапазон установки фазы	От 0° до 360°							
	Уст ком	ановка (понента (г	фазы для армоники)	я выбран	ного ча	стотного		

3.4 Модуляции

3.4.1 Амплитудная модуляция (АМ)

Формы сигнала	Синусоида, прямоугольник, импульс, пила, произвольная							
несущей частоты	(кроме DC постоянного тока							
Источник модуляции	Внутренний/внешний							
Формы сигнала	Синусоида, прямоугольник, нарастающая пила,							
модулирующего	нисходящая пила, шум, произвольная							
колебания								
Диапазон установки	1мкГц 2 МГц							
частоты модуляции								

Диапазон	установки	0% 120 %
глубины мо	дуляции	

3.4.2 Частотная модуляция (ЧМ)

Формы сигнала несущей частоты	Синусоидальная, прямоугольная, пилообразная, импульсная и произвольная (кроме DC постоянного тока)							
Источник модуляции	Вну	Внутренний/внешний						
Формы сигнала	Син	Синусоида, прямоугольник, нарастающая пила,						
модулирующего	нисх	кодящая пи	ила, шум, пр	оизвольна	Я			
колебания								
	KAH 1,2 KAH 3,4							
	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3		
Девиация частоты	0175 МГЦ	0250МГ Ц	0300МГЦ	080МГ Ц	0100 МГЦ			
Диапазон частот	1 мкГц 2 МГц							
модулирующего сигнала								

3.4.3 Фазовая модуляция (ФМ)

Формы сигнала	Синусоидальная, прямоугольная, пилообразная,						
несущей частоты	импульсная и произвольная (кроме DC постоянного тока)						
Источник модуляции	Внутренний/внешний						
Формы сигнала	Синусоида, прямоугольник, нарастающая пила,						
модулирующего колебания	нисходящая пила, шум, произвольная						
Диапазон установки фазы	0 360 °						
Диапазон частот модулирующего сигнала	1 мкГц 2 МГц						

3.4.4 Амплитудная модуляция с двумя боковыми полосами (DSB-AM)

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная, импульс
Источник модуляции	Внутренний/внешний
Формы сигнала модулирующего колебания	Синусоида, прямоугольник, пила, шум, произвольная
Диапазон установки частоты модуляции	1 мкГц2 МГц
Диапазон установки глубины модуляции	0% 100%

3.4.5 Амплитудная манипуляция ASK

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная, импульс						
Источник модуляции /Формы сигнала модулирующего колебания	Внутренний (меандр, коэффициент заполнения 50%)/внешний(TTLypoвень)						
Диапазон установки частоты модуляции	1мкГц 2 МГц						

3.4.6 Частотная манипуляция FSK

	КАН	1,2		К		
	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3
Частота скачка 1	1 мкГц 350 МГц	1 мкГц 500 МГц	1 мкГц 600 МГц	1 мкГц 160 МГц	1 мкГц 20)0 МГц
Формы сигнала	Синусоида, прямоугольник,, пила, произвольная,					
несущей частоты	имп	ульс				
Источник модуляции	Вну	гренний	(меандр,	коэффиь	циента за	полнения
/Формы сигнала	50%	»)/внешний	і(TTLуровень	»)		
модулирующего колебания						
Диапазон установки частоты модуляции	1 мк	:Гц 2 МГі	4			

3.4.7 Фазовая манипуляция PSK

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная, импульс
Источник модуляции /Формы сигнала модулирующего колебания	Внутренний (меандр, коэффициента заполнения 50%)/внешний(TTLypoвень)
Диапазон установки частоты модуляции	1мкГц 2 МГц
Скачок фазы	0 ° 360 °

3.4.8 Трехпозиционная частотная манипуляция (3FSK)

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная, импульс					
Источник модуляции /Формы сигнала модулирующего колебанияции	Внутренний (меандр, коэффициента заполнения 50%)					
Частота модуляции	1мкГц 2 МГц					
	КАН 1,2			КАН 3,4		
	АКИП- АКИП- АКИП- 3433/1 3433/2 3433/3		АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3
Частота скачка1	1 мкГц 350 МГц	1 мкГц 500 МГц	1 мкГц 600 МГц	1 мкГц 160 МГц	1 мкГц 2	200 МГц
Частота скачка2	1 мкГц 350 МГц	1 мкГц 500 МГц	1 мкГц 600 МГц	1 мкГц 160 МГц	1 мкГц 2	200 МГц

3.4.9 Четырехпозиционная частотная манипуляция (4FSK)

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная, импульс					
Источник модуляции /Формы сигнала модулирующего колебания	Внутренний (меандр, коэффициента заполнения 50%)					
Частота модуляции	1мкГц 2 МГц					
	KAH	l 1,2		КАН 3,4		
	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3	АКИП- 3433/1	АКИП- 3433/2	АКИП- 3433/3
Частота скачка1	1 мкГц 350 МГц	1 мкГц 500 МГц	1 мкГц 600 МГц	1 мкГц 160 МГц	1 мкГц 2	200 МГц
Частота скачка2	1 мкГц 350 МГц	1 мкГц 500 МГц	1 мкГц 600 МГц	1 мкГц 160 МГц	1 мкГц 2	200 МГц
Частота скачкаЗ	1 мкГц 350 МГц	1 мкГц 500 МГц	1 мкГц 600 МГц	1 мкГц 160 МГц	1 мкГц 2	200 МГц

3.4.10 Двоичная фазовая манипуляция (BPSK)

Формы сигнала	Синусоида, прямоугольник, пила, произвольная
несущей частоты	
Источник модуляции	Внутренний
Виды	PN3,PN5,PN7, PN9, PN11, PN13, PN15, PN17, PN19, PN21,
последовательностей	PN23, PN25, PN27, PN29, PN31, PN33
Максимальная	1мкб/с 2 Мб/с
скорость передачи	
данных	
Скачок фазы 1	0 ° 360 °
Скачок фазы 2	0 ° 360 °

3.4.11 Квадратурная фазовая манипуляция (QPSK)

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная
Источник модуляции	Внутренний
Виды	PN3,PN5,PN7, PN9, PN11, PN13, PN15, PN17, PN19, PN21,
последовательностей	PN23, PN25, PN27, PN29, PN31, PN33
Максимальна	1мкб/с 2 Мб/с
я скорость	
передачи	
данных	
Скачок фазы 1	0 ° 360 °
Скачок фазы 2	0 ° 360 °
Скачок фазы З(для	0 ° 360 °
QPSK)	
Скачок фазы 4(для QPSK)	0 ° 360 °

3.4.12 Осцилляционная манипуляция (OSK)

Формы сигнала	Синусоида
несущей частоты	
Источник модуляции	Внутренний/внешний
Время колебания	1 нс 500 кс
Частота модуляции	1 мкГц 2 МГц

3.4.13 Суммирующая модуляция (SUM)

Формы сигнала несущей частоты	Синусоида, прямоугольник, пила, произвольная, шум, импульс, гармоники
Источник модуляции	Внутренний/внешний
Формы сигнала модулирующего колебания	Синусоида, прямоугольник, пила, шум, произвольная
Глубина модуляции	0,00 100,00 %
Частота модуляции	1 мкГц 2 МГц (внутренний)

3.4.14 Квадратурная амплитудная модуляция (QAM)

Формы сигнала	Синусоида
несущей частоты	
Виды IQ	QAM4, QAM8, QAM16, QAM32, QAM64, QAM128, QAM256
Виды	PN3,PN5,PN7,PN9,PN11,PN13,PN15,PN17,PN19,PN21,PN23,
последовательностей	PN25,PN27,PN29,PN31,PN33
Максимальная скорость передачи	1 мкб/с 2 Мб/с
данных	

3.4.15 Широтно- импульсная модуляция (PWM)

Формы сигнала	Импульс
несущей частоты	
Источник модуляции	Внутренний/внешний
Модулирующее	Синусоида, прямоугольник, пила, шум, произвольная
колебание	
Диапазон ШИМ	0.000000% 49,999999% от длительности импульса
Частота модуляции	1 мкГц 2 МГц

3.4.16 Качание по частоте ГКЧ(SWEEP)

Источник за	пуска	Внут	гренний, і	внешний на	арастающ	ий фронт,	внешний	
		спадающий фронт, ручной						
Выход	сигнала	Вык	л, нарастан	ощий фронт,	, спадаюц	ций фронт		
запуска								
Закон качан	ия	Линейный, логарифмический, ступенчатый, по списку						
		КАН	KAH 1,2			КАН 3,4		
		АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	
		3433/1	3433/2	3433/3	3433/1	3433/2	3433/3	
Начальная ч	астота	1 мкГц 250 мгн	1мГц	1 мкГц	1 мГц	1 мкГц 20	00 МГц	
		<u>350 МIЦ</u>	<u> 500 Міц</u>	600 №II Ц 1Б.:	<u>160 МIЦ</u>			
конечная ча	істота	т мкгц 350 МГц	тикіц 500 МГц	т мкгц 600 МГц	1 мкіц 160 МГц	1 мкГц 20	00 МГц	
Диапазон	установки	1 мс	500 c	·	•	•		
времени кач	ания							
Диапазон	установки	1 мс	: 500 c					
времени	задержки							
запуска								
Диапазон	установки							
количества	точек	2	2048					
качания	(для	۷	2040					
ступенчатог	o)							
Диапазон	установки	Максимум 2048 частотных точек						
количества	точек							
качания (по	списку)							

3.4.17 Пакетный режим (N-ЦИКЛ)

Режимы импульсной	N-цикл, стробирующий, бесконечный						
последовательности							
Формы несущей	Синусоида, прямоугольник, импульс, пила, произвольная, шум (для стробирующего режима)						
Источник запуска	Внутренний, внешний нарастающий фронт, внешний спадающий фронт, ручной						
Выход сигнала	Выкл, нарастающий фронт, спадающий фронт						
запуска							
Полярность	Положительная, отрицательная (уровень TTL)						
Период пакета	1 мкс 500 с						
Число импульсов в	1 50000						
пакете							

3.4.18 Цифровые протоколы

Тип протокольных	SPI (CH2-SCLK, CH3-nCS, CH4-MOSI)
условий:	I2C(CH3-SCL,CH4-SDA),
	UART (CH4-TX)
Амплитуда	10мВ-10В
Отправить способ	Авто, ручной
Интервальное время	20ns-1000s в автоматическом режиме передачи данных

Формат данных	Шестнадцатеричный, символьный
Длина данных	Максимум 2048 байт
Формат данных	Шестнадцатеричный, символьный

3.5 Частотомер

Измеряемые параметры	Частота, период, коэффициент заполнения, длительность положительного импульса, длительность отрицательного импульса
Частотный диапазон	100 мГц 800 МГц
Погрешность измерения частоты	±5*10 ⁻⁶
Разрешение АЦП	8 бит
Связь по входу	AC, DC, HFReject (ВЧ фильтр)
Уровень запуска	-2,5 B 2,5 B
Чувствительность	0%-100%
Амплитудный	≥100mVrms (100 мГц60МГц),
диапазон/	≥200mVrms (60МГц300МГц),
чувствительность	≥500mVrms (300МГц500МГц),
	≥1Vrm (500Мгц800Мгц).

3.6 Сопряжение и объединение каналов

3.6.1 Сопряжение по частоте

	СН	1,2		CH		
	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-	АКИП-
	3433/1	3433/2	3433/3	3433/1	3433/2	3433/3
Диапазон установки	-350МГц	-500МГц	-600МГц	160МГц	-200МГц	.200МГц
отклонения	350МГц	500МГц	600МГц	160МГц		
Соотношение	0,0	001-10000				

3.6.2 Сопряжение по амплитуде

Диапазон установки отклонения	-9,999 Вп-п - 9,999 Вп-п
Соотношение	0,0001-10000
Порядок объединения каналов	КАН1 объединяется с КАН2, КАН3
	объединяется с КАН4

3.6.3 Сопряжение по фазе

Диапазон установки отклонения	-720°720 °
Соотношение	0,0001-10000

3.7 Параметры дополнительных входов / выходов

Вход сигнала модуляции	внешней	частота < 50кГц, входной уровень ±5 В пик (глубина модуляции 100%), сопротивление 5 кОм
Вход внешнего сигнала частоты	опорной	частота 10 МГц±50Гц; входной уровень TTL, сопротивление 10кОм, развязка по постоянному току, время блокировки <1с
Выход внешнего опорной частоты	сигнала	частота 10 МГц±50Гц; выходной уровень TTL, сопротивление 50 Ом.

Вход пускового сигнала внешней	входной уровень TTL;					
синхронизации (TR IN)	наклон пускового фронта					
	нарастающий/убывающий , время отклика					
	<1мкс,					
	ширина импульса > 100 нс,					
	входное сопротивление: >10 кОм					
	развязка по постоянному току					
Выход пускового сигнала	Частота 1МГц ,					
синхронизации (TR OUT)	выходной уровеньTTL,					
	ширина импульса > 400 нс,					
	выходное сопротивление 50 Ом					
Выход синхронизированного	частота ≤60MHz					
сигнала в режиме сопряжения	СНЗ синхронизируется СН1,					
каналов	СН4 синхронизируется СН2 , (СН3 не					
	синхронизируется с СН4),					
	выходной уровень: TTL;					
	выходное сопротивление: 50 Ом.					

3.8 Общие данные

Интерфейсы	USB-хост, USB-устройство, LAN					
ЖК-дисплей	Цветной графический TFT, диагональ 26 см,					
	разрешение: WVGA 1280x800 пикс					
Потребляемая мощность	не более 50 Вт					
Условия эксплуатации	10°С+40°С, относительная влажность					
	≤90% (при +35°С)					
Условия хранения	-20°С +60°С, относительная влажность ≤					
	60% (при +35°С)					
Габаритные размеры	370 × 185 ×115 мм					
Масса	4,04 кГ					

4 СОСТАВ КОМПЛЕКТА

Прибор поставляется в составе, указанном в таблице 4. 1.

Таблица 4.1

Наименование	Количество	Примечание
Генератор серии АКИП-3433	1	
Сетевой шнур питания	1	
Кабель USB	1	
Кабель BNC-BNC	2	В зависимости от модели
Кабель BNC-2 зажима типа «крокодил»	2	
Руководство по эксплуатации	1	
Диск с ПО	1	
Упаковочная коробка	1	
Опциональные аксессуары (поставляются по заказу)	Модуль усилителя мощ	ности 2 МГц, 10 Вт

Генераторы серии **АКИП-3433** специально разработаны для безопасного использования и проверены путем тестирования в различных условиях окружающей среды и различных режимах работы.

Следующие предостережения рекомендованы для обеспечения безопасности и работоспособности оборудования.

К работе с прибором допускаются лица, ознакомившиеся с техническим описанием и инструкцией по эксплуатации прибора, а также прошедшие инструктаж по технике безопасности.

В приборе имеются напряжения, опасные для жизни.

5.1 Термины и определения

Данное руководство использует следующие термины:

Предупреждение. Указывает на то, что условия или операция могут стать причиной получения травмы, ущерба или угрозы жизни.

Внимание. Указывает на то, что условия или операция могут стать причиной повреждения прибора или нарушения его технического состояния.

Примечание. Привлечение внимание пользователя или акцент на особенности манипуляций, для предотвращения повреждения прибора или нарушений его технического состояния.

5.2 Символы и предупреждения безопасности

Danger: "Опасно" – подчеркивает риск немедленного получения травмы или непосредственной опасности для жизни.

Warning: "Внимание" – означает, что опасность не угрожает непосредственно, но необходимо соблюдать осторожность и быть предельно внимательным.

5.3 Общие требования по технике безопасности

Соблюдение следующих правил безопасности значительно уменьшит возможность поражения электрическим током.

Старайтесь не подвергать себя воздействию высокого напряжения - это опасно для жизни. Снимайте защитный кожух и экраны только по мере необходимости. Не касайтесь высоковольтных конденсаторов сразу, после выключения прибора.

Постарайтесь использовать только одну руку (правую), при регулировке цепей, находящихся под напряжением. Избегайте небрежного контакта с любыми частями оборудования, потому что эти касания могут привести к поражению высоким напряжением.

Работайте по возможности в сухих помещениях с изолирующим покрытием пола или используйте изолирующий материал под вашим стулом и ногами. Если оборудование переносное, поместите его при обслуживании на изолированную поверхность.

Это устройство может быть повреждено статическим электричеством, поэтому по возможности его следует проверять в антистатической зоне. Перед подключением силового кабеля к этому устройству внутренние и внешние проводники следует на короткое время заземлить, чтобы снять статическое электричество. Степень защиты этого устройства составляет 4 кВ для контактного разряда и 8 кВ для воздушного разряда.

Постарайтесь изучить цепи, с которыми Вы работаете, для того, чтобы избегать участков с высокими напряжениями. Помните, что электрические цепи могут находиться под напряжением даже после выключения оборудования.

Металлические части оборудования с двухпроводными шнурами питания не имеют заземления. Это не только представляет опасность поражения электрическим током, но также может вызвать повреждение оборудования.

Старайтесь никогда не работать один. Необходимо, чтобы в пределах досягаемости находился персонал, который сможет оказать вам первую помощь.

5.4 Знаки на корпусе прибора

Â	Опасно для жизни! Высоковольтное		Клемма защитного заземления (безопасности)
	Внимание! Обратитесь к Руководству пользователя	\rightarrow	Клемма заземления шасси и корпуса и прибора (рабочее)
		<u> </u>	Клемма измерительного заземления
\sim	Устройство переменного тока. Пожалуйста, проверьте диапазон напряжения в регионе.		Устройство постоянного тока. Пожалуйста, проверьте диапазон напряжения в регионе.

К работе с прибором допускаются лица, ознакомившиеся с техническим описанием и инструкцией по эксплуатации прибора, а также прошедшие инструктаж по технике безопасности.

В приборе имеются напряжения, опасные для жизни.

Маркирование и пломбирование

Наименование и условное обозначение прибора, товарный знак предприятия нанесены в верхней части лицевой панели. Заводской порядковый номер прибора и год изготовления расположены на задней панели (в одном числовом блоке). Прибор пломбируется самоклеющимися (разрушающимися при вскрытии) прибора пломбами, которые расположены на задней панели.

Разборка прибора

Из-за того, что генераторы являются точными средствами измерения, все процедуры по разборке, настройке и обслуживанию должны осуществляться только в специализированных сервис-центрах.

Питание прибора

Питающее напряжение должно быть в пределах 100...240В (±10%), частота от 45 до 66 Гц. Максимальная потребляемая мощность 120 Вт.

Заземление

Для предотвращения электрического удара защитный заземляющий проводник 3-х контактного кабеля питания должен быть надежное соединение с шиной заземления (при подключении через евророзетку).

Размещение на рабочем месте

Необходимо размещать генератор в помещениях с соблюдением рекомендаций по пригодным внешним условиям. Не допускать воздействия химикатов, прямых солнечных лучей и сильных электромагнитных полей.

Не помещайте тяжелые предметы на верхнюю поверхность прибора.

6 НАЗНАЧЕНИЕ ОРГАНОВ УПРАВЛЕНИЯ И ИНДИКАЦИИ

6.1 Передняя панель

Передняя панель генератора сигналов формы серии АКИП является очень наглядным и простым в использовании. Это показано на рисунке ниже. Совместим описание органов управления с кратким пояснением их функционала.

10 q 8 A ? 🗑 Counter Utility СНЗ CH1 CH2 CH4 7 Channel Modulate Sweep Burst \bullet \bullet 6 Ar. ЛП Out ON Sine Noise 7 8 9 1.000,000,000 kHz INV OFF 4 5 6 Arb 100.0 mVpp Load HighZ 123 Harmarke 0.0 mV DC • • • 5 0.000 Pulse Copy CH1-CH2 OF PRBS WARD + (Utility) 4 Акип-3433/3 3 1 2

Рисунок 6.1.

1. Переключатель включения питания 🏾 🛄-

Подключите прибор к источнику питания с помощью кабеля питания в аксессуарах или других линий в соответствии со стандартом

Включите выключатель питания на задней панели (поз.10 см ниже), чтобы включить управление прибором.

После подачи напряжения питания и оно находится в норме, подсветка клавиши включена красным цветом. После включения прибора этой кнопкой подсветка горит зеленым цветом.

После этого экран переходит в режим функции и отображения интерфейса запуска.

Чтобы предотвратить случайное нажатие кнопки ON/OFF для выключения прибора, эту клавишу переключателя необходимо удерживать нажатой около 1 с, чтобы выключить прибор. Подсветка клавиши и экрана одновременно переключается обратно в красный цвет после выключения прибора.

Напряжение питания источника питания составляет 100 В~240 В переменного тока. Частота составляет 45 Гц~440 Гц.

(2). Разъем USB-интерфейса

Прибор поддерживает USB-накопители FAT32 с максимальной емкостью 32Gb.

Интерфейс USB может использоваться для сохранения и чтения текущего файла настроек профиля.

Интерфейс USB также может использоваться для обновления системной программной прошивки, чтобы текущая программа генератора функций/аббревиатур являлась последней версией, выпущенной производителем прибора.

③. Выходные разъемы каналов СН1, СН2, СН3, СН4 сигнала генератора.

④. Кнопки управления и активации каналов (имеют ту же подсветку, как и выходные разъемы каналов CH1, CH2, CH3, CH4).

Существует три способа работы:

1) Быстрое переключение текущего канала (панель CH1 выделена, что означает, что это текущий канал, вкладка параметров показывает информацию о канале CH1 для настроек параметров сигнала). Канал CH1 может быстро включать/выключать выходную функцию текущего канала.

2) Нажмите **UTILITY** → **Channel** → Канал, включите функцию вывода.

3) Коснитесь настройки канала в левой части экрана.

При запуске функции вывода загорится подсветка CH1, на вкладке канала отобразится режим вывода текущего канала (покажет слова «продолжить», «модулировать» и т. д.), а выходной терминал канала одновременно экспортирует сигнал. При выключении функции вывода подсветка CH1 также погаснет, вкладка канала станет серой, а выходной терминал канала закроется.

(5). Цифровая клавиатура и клавиша **Utility**

Цифровая клавиша используется для ввода цифр от 0 до 9, десятичной точки «.», символьной клавиши.«+/-" и клавиша удаления.

Клавиша **Utility** используется для установки параметров настройки.

6). Клавиши направления 🖛 н

Клавиша направления используется для переключения выбора режима цифра числа или перемещения курсора (стрелка влево или стрелка вправо) при использовании многофункциональной ручки или клавиши направления для установки параметра.

7. Многофункциональный регулятор/клавиша

Многофункциональный регулятор используется для изменения численного значения (по часовой стрелке для увеличения числа) или используется как клавиша меню для выбора или подтверждения настроек параметров.

(8). Поле клавиш управления режимом вывода

Клавиши **СW, MOD**, **SWEEP, BURST** используются для управления выходом непрерывного сигнала, модуляции, свипирования, пакетного сигнала.

9. Поле клавиш быстрого выбора формы сигнала

Позволяет быстро выбирать форму выходного сигнала, чтобы создать необходимый набор параметров общего сложного сигнала.

10. Экран дисплея

Представляет собой 10,1-дюймовый ТFT дисплей.

Различные цвета сигналов применяются для различия состояний вывода, выбора меню и другой важной информации о каналах CH1, CH2, CH3 и CH4.

Внимание : Защита от перенапряжения! Канала выхода имеют функцию защиты от перенапряжения, следующая ситуация активирует функцию:

амплитуда > 4 Впп, входное напряжение > ±12,5 В, частота < 10 кГц ;

амплитуда < 4 Впп, входное напряжение > $\pm 5,0$ В, частота < 10 кГц .

В случае превышения на дисплее появится сообщение "Over-voltage protection, the output is closed (Защита от перенапряжения включена, выход закрыт).

6.2 Задняя панель

Вид задней панели прибора представлен на рисунке ниже.

Рисунок 6.2

1). Отверстие для отвода тепла.

Для обеспечения хорошей теплоотдачи генератора не закрывайте эти отверстия.

2. Разъем внешнего входного сигнала 10 МГц Іп

Позволяет установить синхронизацию нескольких генераторов функций/произвольных сигналов или синхронизацию с внешним тактовым сигналом 10 МГц. Также позволяет принять внешний тактовый сигнал 10 МГц.

3. Разъем внутреннего выходного сигнала 10 МГц Out

Позволяет выдать синхронизирующий или внешний тактовый сигнал с опорной частотой 10 МГц для многофункциональных/произвольных генераторов сигналов. Когда задан источник тактового сигнала прибора внутренний 10 МГц, то на разъем выводится внутренний тактовый сигнал 10 МГц.

(4). Разъем входного сигнала встроенного частотомера **Counter**.

Входной сигнал подается через этот порт при использовании генератора в качестве частотомера.

(5). Разъем сигнала внешней цифровой модуляции и ГКЧ.

Позволяет использовать в качестве источника внешней модуляции внешние сигналы ASK, FSK, PSK или OSK, (уровень TTL). Соответствующая выходная амплитуда, частота и фаза определяются уровнем сигнала внешнего цифрового интерфейса модуляции.

Если источник запуска ГКЧ выбран как внешний, то он должен иметь уровень импульса TTL и подан с заданной полярностью. Также это допустимо, если источник запуска пакетного режима (N-цикла) тоже является внешним. Также это допустимо, если вводится стробированный сигнал через данный разъем.

6. Выходной разъем сигнала с внешней аналоговой модуляцией

В случае формирования выходного сигнала AM, FM, PM, DSB-AM, SUM или PWM и если задана модуляция внешняя, входной сигнал тоже проходит через внешнюю аналоговую модуляцию. Соответственно параметры входного сигнала внешней аналоговой модуляции , такие как глубина модуляции, частота отклонения , отклонение фазы или отклонение коэффициента заполнения импульсов тоже имеют уровень сигнала ±5 В

(7). Разъем USB-интерфейса

Используется для подключения генератора к управляющему компьютеру через интерфейс USB для управления прибором или перепрограммирования.

(8). Порт локальной сети

Прибор может подключаться к локальной сети через порт LAN для осуществления дистанционного управления.

 9. Разъем для подключения сетевого кабеля Питание переменного тока: 100~240 В, Частота сети 45~440 Гц, предохранитель: 250 В, Т2А.

(10). Главный выключатель подачи питания: включение питания в положении «1»; выключение питания в положении «0» (кнопка ВКЛ/ВЫКЛ на передней панели используется позже).

Предохранительный замок.
 Может быть использован для фиксации прибора на рабочем месте

6.3 Описание сенсорного дисплея

Генераторы серии **АКИП-3433** снабжены цветным сенсорным (емкостным) ЖК дисплеем с многопанельной компоновкой окон дисплея.

Положение категории меню фиксировано, что снижает уровень переходов интерфейса.

Рисунок 6.3.1

1 . Область управления Домой , Помощь, Имерение частоты. Эта область не изменяется при других переходах по интерфейсу.

• Символ дома, нажмите этот символ, чтобы вернуться на домашнюю страницу в любом другом интерфейсе.

🕑 : Символ помощи, нажмите этот символ, чтобы открыть меню справки.

• Символ частоты, нажмите на этот символ, чтобы открыть частотомер, он отображает результат теста.

2). Область параметров каналов.

Нажмите вкладки с символами CH1、CH2、CH3、CH4 и Utility для настройки параметров и вторичных функций. Использование подсветки дисплея: выбранная вкладка будет выделена цветом CH или голубым вторичной функции, слова - белым цветом.

3 .Область установки режимов вывода. Допустим непрерывный, модуляция, развертка, пакетный.

(4) .Область настройки формы сигнала генератора.

Девять форм сигнала генератора - синусоида, прямоугольная волна, пилообразная волна, импульсная волна, гармоническая волна, шум, PRBS (псевдослучайная двоичная последовательность), постоянный ток, произвольная волна.

(5) . Область установленных значений параметров.

Отображение значений параметров текущего сигнала в формате списка, нажмите на области списка параметров, чтобы включить редактирование и используя всплывающую виртуальную цифровую клавиатуру, задайте параметр. Это показано на рисунке ниже.

ſ	?										∳ 🗗
	CH1		CH2	2	CI	H3		CH4		Uti	lity
	Continue Sine Modulate		ate	Sweep Burst		Burst		Cha	annel		
	Base	e Squa	re Ramp	Pulse	Arb H	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Noise -		ЛГ РКВS	Out	OFF
	Freq 1.000,00 Ampl 100.0 m ²		000,000 kH	łz	MHz	7	8	9	্্্র	INV	OFF
			mVpp		kHz	4	5	6			
	Offset	0.0 m\	/		Hz	1	2	3	t	Load	HighZ
	Phase	0.000 '	,							Сору	CH1←CH2
	NoiseSum	OFF			mHz	0			41	Ĺ	
					μ Hz	→	↓ ↓	→			
1	HighZ	\sim Gontin	ue 2 Hig	shZ	\sim Continue	3 High	Z	∕ Continue	4 High		Continue

Parameter item Parameter setting area

virtual keyboard

Рисунок 6.3.2

6 Область параметров канала: можно выбрать

• « CH1 » выделение подсветкой выбранного канала CH ;

• «**HighZ**» выбран тип входного импеданса (примерс высоким сопротивл<u>ени</u>ем);

🗠 означает выходную волну синусоидальной формы;

• «Continue» означает выходной сигнал как непрерывную волну.

Другие режимы сигнала могут представлять

Carrier wave, несущий

AM, амплитудно модулированный **Linear** линейный ,

N period пакетный с N-циклом.

⑦Область отображения формы сигнала: отображает текущую форму сигнала (ее можно отличить по цвету или подсветке вкладки СН, список параметров отображает текущие параметры формы сигнала с левой стороны).

Примечание: при работе по вкладке **Utility** будет отсутствовать область отображения формы сигнала.

(8). Область настройки состояния канала: можно выбрать:

вкладку **ОUT** включения /выключения выхода канала;

вкладку | INV включить/выключить инверсную форму сигнала;

вкладку **LOAD** включить/выключить высокий импеданс выхода, чтобы включить **HighZ** или 50 Ом для соответствия сопротивлению выходной клеммы;

вкладку **СН1 ← СН2**, чтобы скопировать настройки параметров канала **СН2** в настройки канала **СН1**

9.Область отображение состояния подключения прибора к внешним устройствам:

7 ПОДГОТОВКА ГЕНЕРАТОРА К РАБОТЕ

7.1 Общий осмотр

Пожалуйста, проверьте прибор, выполнив следующие шаги.

7.2 Осмотр повреждений при транспортировке

Если упаковочные коробки или пенопластовая защитная прокладка серьезно повреждены, свяжитесь с дистрибьютором или местным офисом. В связи с повреждением при транспортировке, пожалуйста, сохраните упаковку и сообщите об этом в соответствующий транспортный отдел и дистрибьютору, они заменят или отремонтируют продукт.

7.3 Осмотр принадлежностей

Аксессуары для АКИП 3433: кабель питания (применяется в зависимости от страны/региона), один USB-кабель, четыре кабеля BNC (1 метр). Если аксессуары утеряны или повреждены, обратитесь к дистрибьютору или в местный офис.

7.4 Осмотр прибора

Если внешний вид прибора поврежден. Он не может работать должным образом или тест производительности не пройден. Пожалуйста, свяжитесь с дистрибьютором или местным офисом.

9 БАЗОВЫЕ ОПЕРАЦИИ

Генератор сигналов функции/произвольной формы серии АКИП может выводить несущую волну по одному или четырем каналам, включая синусоидальную волну, прямоугольную волну, пилообразную волну, импульсную волну, гармоническую волну, шум, PRBS (псевдослучайную двоичную последовательность), постоянный ток, произвольную волну. При активации прибор выводит синусоидальную волну частотой 1 кГц, амплитудой 100 мВрр (настройка по умолчанию).

В этом разделе описывается, как настроить выход сигнала несущей частоты. Содержание раздела следующее:

9.1 Настройка выходных сигналов стандартной формы

9.1.1 Установка частоты выходного сигнала

По умолчанию после включения прибора выходной сигнал устанавливается со следующими заданными параметрами (в примере подсветка красным цветом):

Форма сигнала синус

Канал 1

Сигнал непрерывный

Частота 1 кГц

Амплитуда 100 мВ пик пик.

Для установки частоты, например 2,5 МГц необходимо :

1) Коснитесь области списка параметров на вкладке **Frequency**

2) Откройте виртуальную цифровую клавиатуру, чтобы ввести **2,5 МГц** (или поверните многофункциональный регулятор и клавишу направления, чтобы ввести значение).

3) Выберете вкладку **Frequency**, повторно, чтобы перейти к параметрам единиц измерения **Frequency/Period**.

Примечание: многофункциональный регулятор также можно использовать для подтверждения значений параметров.

Это показано на рисунке ниже.

Рисунок 8.1.1.

9.1.2 Установка амплитуды выходного сигнала

По умолчанию после включения прибора выходной сигнал устанавливается со следующими параметрами :

Канал 1 Сигнал непрерывный Форма сигнала синусоидальный Частота 1 кГц Амплитуда 100 мВ пик.

Для установки амплитуды , например значением 300 мВпик , необходимо:

1) Нажмите вкладку **Continue**, далее вкладку **Sine**

2) Коснитесь области списка параметров на вкладке **Amplitude**

3) Откройте виртуальную цифровую клавиатуру, чтобы ввести 300 мВ (или поверните многофункциональный регулятор и клавишу направления, чтобы ввести значение).

4) Выберете вкладку **Amplitude** повторно, чтобы перейти к параметрам единиц измерения **Vpp**, **Vrms**, **dBm**

Примечание: настройка dBm активна только при отсутствии режима нагрузки HighZ

Это показано на рисунке ниже.

9.1.3 Установка постоянного напряжения смещения выходного сигнала

По умолчанию после включения прибора выходное постоянное напряжение смещения амплитуды синусоидального сигнала составляет 0 В.

Для установки постоянног<u>о напряжения</u> смещения , например на уровне -150 мВ:

1) Нажмите вкладку **Continue**, далее вкладку **Sine**

2) Коснитесь области списка параметров на вкладке Offset

3) Откройте виртуальную цифровую клавиатуру, чтобы ввести 150 мВ (или поверните многофункциональный регулятор и клавишу направления, чтобы ввести значение).

4) Нажмите вкладку **Offset** повторно чтобы перейти к параметрам **High** (максимум)/**Low** (минимум). Этот метод удобен для установки пределов сигнала цифровых приложений

F	}? 💣									₽₽
	CH1 CH2		СНЗ С		Cł	14	l4 Utility			
	Continue Sine Modulate		Sweep Burst			t	Cha	annel		
	Base	ne Squ	Lare Ramp Po	L ulse	Arb H	Armonic No	oise DC		Out	OFF
	Freq	2.500	,000,000 MHz						INV	OFF
	Ampl	300.0	mVpp							
	Offset	-150.0	0 mV						Load	HighZ
	Phase	0.000							Сору	:H1←CH2
	NoiseSum	OFF							L	
1			nue 2 HighZ			3 HighZ		tinue 4 Hig	nZ	

Рисунок 8.1.3.

9.1.4 Установка сигнала прямоугольной формы и коэффициента заполнения

По умолчанию после включения прибора в режим генерации прямоугольного сигнала

значение коэффициента заполнения составляет 50%

Коэффициент заполнения прямоугольного сигнала представляет собой отношение ширины импульса прямоугольной формы на высоком уровне к длительности периода (предполагая, что форма сигнала не является инверсной).

Заданы параметры сигнала следующие:

Шаг установки частоты 1 кГц,

Амплитуда 1,5 В пик-пик,

Напряжение смещения постоянного тока 0 В

Коэффициент заполнения 70%.

Для установки этой форм<u>ы сигнала</u>:

1) Нажмите вкладку **Continue**, далее вкладку **Square**, далее установите амплитуду 1,5 В пик –пик,

2) Коснитесь области списка параметров на вкладке Duty ,

3) Откройте виртуальную цифровую клавиатуру, чтобы ввести 70% (или поверните многофункциональный регулятор и клавишу направления, чтобы ввести значение),

4) Нажмите вкладку **Duty** повторно чтобы перейти к параметрам единиц измерения **Duty/PWidth**.

ŝ	}?@								₽ 🗗
	CH1		CH2	CH3		CH4		Utility	
	Continue Square	Continue Square Modulate		Sweep		Burst		Channel	
	Base Sir	ne So	Lare Ramp Pulse	Arb Harmon	∧ nic Noise		Л s	Out	OFF
	Freq	1.000	0,000,000 kHz	ļ				INV	OFF
	Ampl	1.500	0,0 Vpp						
	Offset	0.0 m	۱V					Load	HighZ
	Phase	0.000)°					СоруС	H1←CH2
	Duty	70.00	00,000 %						
	NoiseSum	OFF							
1	HighZ	Cont	inue 2 Highz	\sim Gontinue 3	HighZ	\sim Continue	4 High	z H	Continue

Рисунок 8.1.4.

9.1.5 Настройки параметров сигнала импульсной формы

Генератор позволяет настраивать параметры сигнала импульсной формы, регулируемого по ширине импульса и времени фронта.

Коэффициент заполнения импульсного сигнала представляет собой отношение длительности импульса между пороговым значением нарастающего фронта на уровне 50% и спадающего фронта на уровне 50% к периоду до следующего импульса (при условии, что форма сигнала не является инверсной).

По умолчанию длительность импульса устанавливается при коэффициенте заполнения импульсного сигнала 50%, время нарастания/спада фронта импульса 1 мкс.

Другие параметры сигнала следующие:

период 2 мс,

амплитуда 1,5 Впик-пик,

постоянное напряжение смещения 0 В,

Для установки длительности импульса при коэффициенте заполнения 25 % (ограничен нижней шириной импульсного сигнала 2,4 нс) и времени нарастания/спада фронта, например 200 мкс :

1) Нажмите вкладку **Continue**, далее вкладку **Pulse**, далее установите амплитуду 1,5 В пик – пик,

2) Нажмите вкладку **Duty**, с помощью виртуальной цифровой клавиатуры введите 25%,

3) Нажмите вкладку **REdge** для нарастающего фронта , откройте виртуальную цифровую клавиатуру и введите 200us, таким же образом, как и для настройки **FEdge** для спадающего среза.

ŝ	}?@											∳ Ç
	CH1			CH2		С	H3		CH4	1	Ut	ility
	Continue Pulse			Modulate		Sweep			Burst		Channel	
	Base Sir	, " ^s	iquare	Ramp	Pulse	∽∽ _{Arb}	Harmonic	Moise	DC		Out	ON
	Period	2.00	0,000,	0 ms		ns	7	8	9		INV	OFF
	Ampl	1.50	0,0 Vp	р		μs	4	5	6			
	Offset	0.0 r	nV			ms	1	2	3		Load	HighZ
	Phase	0.00	0 °					+	+		Сору	СН1←СН2
	Duty	25.0	00,000	0 %			- ·	+ '	· ·			
	REdge	200				ks	-	↓ ↓	→			
1	HighZ	Cont	∟ tinue	2 Highi			3 Hig			ue 4 Hig	hZ	

Рисунок 8.1.5.

9.1.6 Настройки сигнала постоянного напряжения

По умолчанию значение - 0 В постоянного напряжения.

Для установки значения постоянного напряжения, например на 3 В:

1) Нажмите вкладку **Сопtinue**, далее вкладку **DC**,

2) Нажмите вкладку **Offset**, с помощью виртуальной цифровой клавиатуры введите 3 В

3) Нажмите вкладку чтобы перейти к параметрам единиц измерения V.

Это показано на рисунке ниже.

Ŀ	}?	Cor										∳ 📮	
	CH1			CH2			CH3		CH4			Utility	
				Modulate		Sweep		Burst			Channel		
	Base	Sine	Square	Ramp	Pulse	~~~ _{Arb}	Harmonic	Moise −	DC	PRBS	Out	OFF	
	Offs	et 3				v	7	8	9	+/-	INV	OFF	
						mV	4	5	6		Load	HighZ	
						-	1	2	3	f	Copy C	H1←CH2	
							• •	+	· ->	L L			
1				2 Highi		Continue	3 Hig			B 4 High			

Рисунок 8.1.6.

9.1.7 Настройки сигнала пилообразной /треугольной формы

Коэффициент симметрии сигнала пилообразной формы представляет собой отношение времени нарастания положительного фронта к периоду до следующего импульса (при условии, что форма сигнала не является инверсной).

По умолчанию коэффициент симметрии составляет 50%. Заданные параметры сигнала следующие: частота 10 кГц, амплитуда 2 Впик-пик,

смещение постоянного тока 0 В,

коэффициент симметрии 60%:

Для установки этой формы сигнала:

1) Нажмите вкладку **Continue**, далее вкладку **Ramp**, и откройте виртуальную цифровую клавиатуру, чтобы ввести частоту 10 кГц, амплитуду 2в пикпик,

2) Нажмите на области списка параметров вкладку **Symmetry**, с помощью виртуальной цифровой клавиатуры введите 60%,

Рисунок 8.1.7.

9.1.8 Настройки сигнала белого шума

По умолчанию Значение амплитуды сигнала белого шума составляет 100 мВрр, смещение постоянного тока составляет 0 мВ (стандартный гауссовский шум). Если амплитуда другого сигнала и функция смещения постоянного тока изменились, значение по умолчанию шумового сигнала также изменится. Таким образом, можно задать только амплитуду и смещение постоянного тока в режиме шумового сигнала.

Заданные параметры сигнала следующие:

частота 100МГц,

амплитуда 300 мВпик-пик,

смещение постоянного тока 0 В,

Для установки этой формы <u>сигнала :</u>

1) Нажмите вкладку **Continue**, далее вкладку **Noise**, и откройте виртуальную цифровую клавиатуру на области списка параметров, чтобы ввести частоту 100 МГц, амплитуду 300 мВпик-пик,

	} ?					∲ 🔂
	CH1 Continue Noise		CH2	CH3	CH4	Utility
			Modulate	Sweep	Burst	Channel
	Base	∑ ™ S	quare Ramp Pulse	Arb Harmonic	Noise DC PRBS	Out OFF
	Bandwidt	Bandwidth 100.000,000,0 MHz			INV OFF	
	Ampl 300.0		0 mVpp	T AMPANIN'N	Land High 7	
	Offset	0.0 n	nV			Load
				hand	من العالي العامية العامي ا	Сору СН1—СН2
				 To be a difference of a set of 	n teologiaa (jan 1986) (ta ala jan 1998) (ta ba	
1	HighZ	/\ Cont	Wr 2 HighZ	Continue 3 High	hZ Cont inue 4 H	ighZ Continue

Рисунок 8.1.7.

9.1.9 Настройки сигнала гармонической формы

Генераторы серии **АКИП-3433** могут выступать в качестве генератора гармонических колебаний с возможностью добавления гармоник заданного порядка, амплитуды и фазы.

Согласно преобразованию Фурье, форма сигнала при добавлении гармоник, будет представлять собой ряд синусоидальных сигналов, рассчитанных по следующей формуле:

$$f(t) = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2) + A_3 \sin(2\pi f_3 t + \varphi_3) + \dots$$

Преобразование Фурье. Теорема о том, что временная область формы сигнала периодической функции является суперпозицией последовательной синусоиды.

Обычно

компонент с частотой f1 называется фундаментальной формой сигнала,

f1 является фундаментальной частотой сигнала,

А1 является фундаментальной амплитудой сигнала,

ф1 является фундаментальной фазой сигнала.

Частоты других компонентов (гармоники), являющихся целыми кратными несущей частоты, называются гармонической волной. Гармоника, номинальная частота которой является нечетным кратным частоты несущей сигнала, называется нечетной гармоникой; гармоника, номинальная частота которой является четным кратным несущей частоты, называется четной гармоникой.

По умолчанию параметры сигнала следующие:

Частота 1 кГц, амплитуда 100 мВпик-пик, смещение постоянного тока 0 мВ, фаза 0°, тип гармонического сигнала как нечетная гармоника, общее количество гармонических волн 2, амплитуда гармонического сигнала 100 мВ, фаза гармонического сигнала 0°. Заданные параметры сигнала следующие: частота 1 МГц, амплитуда 5 Впик-пик смещение постоянного тока 0 мВ, фаза 0°, тип гармонического сигнала как исходная, общее количество гармонических волн 2, амплитуда гармоники 4 Впик-пик, фаза гармоники 0°:

Для установки этой формы сигнала :

1) Нажмите вкладку **Continue**, далее вкладка **Harmonic**. и откройте виртуальную цифровую клавиатуру, чтобы ввести частоту 1 МГц, амплитуду 5 Впикпик.

2) Нажмите вкладку на области списка параметров **Tota**, введите значение 2,

3) Нажмите вкладку **Туре**, выберете вкладку **All**,

4) Нажмите **Amplitue**, введите значение 4 В пик-пик.

Это показано на рисунке ниже.

Рисунок 8.1.9

9.1.10 Настройки сигнала формы псевдослучайной двоичной последовательности ПСДП (PRBS)

Генераторы серии **АКИП-3433** могут генерировать последовательности **PRBS** с максимальной скоростью передачи 312,5 Мбит/с.

Заданные параметры сигнала следующие:

скорость передачи данных сигнала PRBS 50 кбит/с,

амплитуда 4 Впик-пик,

элемент кода PN7

время фронта 20 нс:

Для установки этой формы сигнала :

1) Нажмите вкладку **Continue**, далее вкладка **PRBS**. и откройте виртуальную цифровую клавиатуру, чтобы ввести амплитуду 4 В<u>пик-пик</u>.

2) Нажмите вкладку на области списка параметров **Bitrade**l , введите значение 50kBps,ybt **PN7** номер 2,

3) Нажмите вкладку **PN**, выберете вкладку элемент кода **PN7**,

4) По умолчанию время фронта импульса **Edge Time** установлено значение 20нс.
| | ? | | | | Ý 🗗 |
|---|------------------|--------------------|--------------------|---------------|---------------|
| | CH1 | CH2 | CH3 | CH4 | Utility |
| | Continue
PRBS | Modulate | Sweep | Burst | Channel |
| | Base Sine | Square Ramp Pulse | Arb Harmonic Noise | | Out OFF |
| | Bitrate | 50.000,000,00 kbps | | | INV OFF |
| | Ampl | 4.000,0 Vpp | | | |
| (| Offset | 0.0 mV | | | Load HighZ |
| | PN Code | PN7 | | | Сору СН1-СН2 |
| | EdgeTime | 20.0 ns | | | |
| | NoiseSum | OFF | | | |
| 1 | | Continue 2 HighZ | Continue 3 HighZ | Eantinue 4 Hi | ghZ Cont inue |

Рисунок 8.1.10

9.1.11 Настройка формы сигнала с наложением шума

Генераторы серии **АКИП-3433** могут формировать добавлять произвольный шум к форме сигнала. Отношение сигнал/шум регулируется.

Заданные параметры сигнала следующие: тип основного сигнала синусоидальный, частота 10 кГц, амплитуда 2 Впик-пик, смещение постоянного тока 0 В, отношение сигнал/шуму 0 дБ. Шаги установки этой формы сигнала :

1) Нажмите вкладку **Continue**, далее вкладку **Sine** и откройте виртуальную цифровую клавиатуру на области списка параметров, чтобы ввести частоту 10 кГц, амплитуду 2 Впик-пик,

2) Нажмите в области списка параметров на вкладку **Noise** в положение **ON**

3) Нажмите вкладку **SNR** и установите значение 0 dB

Примечание:

1) Различная частота и амплитуда будут влиять на диапазон отношения Сигнал/Шум, вкладка SNR .По умолчанию составляет 10 дБ.

При включении наложения шума функция амплитудной связи недоступна.
Это показано на рисунке ниже.

	?@					ŶĢ
	CH1	CH2	СНЗ	CH	14 Utili	ty
		e Modula	te Sweep	Burst	t Cha	nnel
	Base	square Ramp	Pulse Arb Harm	onic Noise DC	PRBS Out C	N
	Freq	10.000,000,00 kH:	z		INV	OFF
	Ampl	2.000,0 Vpp	a la	dithu		
	Offset	0.0 mV			Load	HighZ
	Phase	0.000 °	illain a		Сору Сн	I1←CH2
	NoiseSum	ON			duin.	
	SNR	0.000 dB				
1	HighZ	Continue 2 High	Z Gontinue	3 HighZ Cont	inue 4 HighZ	∼ Cont inue

Рисунок 8.1.11

9.2 Дополнительные функции

Утилита может устанавливать настройки канала, связи каналов, частотомер, цифровой протокол, систему и интернет.

Подробное описание приведено ниже в соответствующих таблицах,

9.2.1 Настройка каналов

Настройки меню показаны в таблицах ниже.

Функциональное меню	Настройка	Параметр	Описание
	Output	OFF, ON	Выкл/Вкл
	Inverse	OFF, ON	Выкл/Вкл
	Load	50 Ом, HiZ	Диапазон от 1 Ом до 1000 кОм
	Load	OFF, ON	Выкл/Вкл
	Amplitude limit	OFF, ON	Выкл/Вкл
CH1/2	High	-	Позволяет задать верхний предел уровня выходного сигнала
	Lower	-	Позволяет задать нижний предел уровня выходного сигнала

Функциональное меню	Настройка	Параметр	Описание
	Output	OFF, ON	Выкл/Вкл
	Inverse	OFF, ON	Выкл/Вкл
СП3/4	Load	HiZ	Диапазон от 1
			Ом до 1000

		кОм
Amplitude limit	OFF, ON	Диапазон от 1
		Ом до 999 Ом
High	-	Позволяет
		задать
		верхний
		предел уровня
		выходного
		сигнала
Lower	-	Позволяет
		задать нижний
		предел уровня
		выходного
		сигнала

Для входа в меню настройки канала выполните следующие действия :

Utility далее вкладку → Channel для выполнения Нажмите клавишу соответствующих настроек в области состояния канала :

1) Выход.

Нажмите **Out**, чтобы перейти к **ON/OFF** выбранного канала.

Примечание: Клавиши на передней панели прибора СН1、СН2、СН3、СН4 позволяют быстро включить/выключить функцию выхода канала на передней панели.

2) Инверсия сигнала.

Нажмите вкладку **INV**, чтобы перейти к **ON/OFF** инвертирования выбранного канала

3) Входной импеданс.

Нажмите Load, чтобы выбрать HighZ, 50 Ом или ввести число в диапазоне от 1 Ом до 1000 кОм.

4) Ограничение амплитуды

Нажмите клавишу Amp Limit для включения ON/ выключения OFF предела по уровню выходного сигнала для защиты от перегрузок.

Нажмите **High** для ввода верхнего предела по амплитуде.

Нажмите **Lower** для ввода нижнего предела по амплитуде.

Синхронизация выходов 5)

Нажмите вкладку Sync Out, чтобы перейти к ON/OFF.

Назначаются пары каналов синхронизации:

Синхронизирующий выход СН1 — синхронизируемый это СН3,

Синхронизирующий выход СН2 — синхронизируемый это соответственно СН4.

- Когда выход синхронизации СН1 включен, вкладка СН3 становится вида

Когда включен выход синхронизации СН2, вкладка СН4 становится вида CH2 SYNC OUT

Синхронизация обратная 6)

Нажмите Sync-INV для пошагового включения ON/выключения OFF.

9.2.2 Настройка связи (сопряжения) между каналами

Связь между каналами выхода классифицируется как частотная связь, амплитудная связь и фазовая связь.

Настройки меню показаны в таблицах ниже.

Связь по частоте			
Функциональное меню	Настройка	Параметр	Описание
	Frequency	OFF/ON	
	Туре	Ratio,	Отношение,
Fraguency Coupling		Deviation	Отклонение
Frequency Coupling	Ratio	CH2:CH1 or	Выбрать
		CH4:CH3	Отношение
	Deviation	CH2:CH1 or	Выбрать

вазь по частоте

			CH4:CH3	Отклонение
--	--	--	---------	------------

Связь по амплитуде

Функциональное меню	Настройка	Параметр	Описание
	Amplitude	OFF/ON	
	Туре	Ratio,	Отношение,
		Deviation	Отклонение
Amplitude Coupling	Ratio	CH2:CH1 or	Выбрать
		CH4:CH3	Отношение
	Deviation	CH2:CH1 or	Выбрать
		CH4:CH3	Отклонение

Связь по фазе

Функциональное меню	Настройка	Параметр	Описание
	Phase	OFF/ON	
	Туре	Ratio,	Отношение,
		Deviation	Отклонение
Phase Coupling	Ratio	CH2:CH1 or	Выбрать
		CH4:CH3	Отношение
	Deviation	CH2:CH1 or	Выбрать
		CH4:CH3	Отклонение

Примечание:

1. Настройка связи СН3 с СН4 аналогичная, как и для связи СН1 с СН2.

2.Объединение каналов недоступно при включенном сопряжении по амплитуде.

Нажмите клавишу **Utility** далее вкладку → **Coupling** для выполнения соответствующих настроек в области состояния канала :

• Связь по Частоте

В режиме сопряжения частот устанавливаются Отношения или отклонения. CH1 и CH2 являются опорными источниками друг для друга, поэтому изменения частоты одного из каналов (как опорного источника), другим каналом будет автоматически подстраиваться. Установленные значения Отношение/отклонение опорного канала поддерживается постоянными.

Отношение: удельное значение CH2 : CH1 (операция деления);

Отклонение: значение разницы СН2-СН1(операция вычитания).

Примечание:

1. Настройки связи по частоте каналов СНЗ с СН4 аналогичные, как для связи СН1 с СН2.

Для установки этого режима :

1) Нажмите вкладку **Freq**, чтобы перейти от **OFF/ON.**

2) Нажмите **Туре** и перейдите к вкладкам **Ratio/Deviation**. чтобы перейти к установке Отношение/отклонение.

3) Задайте Отношение: нажмите вкладку **СН2:СН1**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу **Enter**.

4) Задайте отклонение: нажмите вкладку **СН2:СН1**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу **Enter**, ввод

• Связь по Амплитуде

В режиме связи по амплитуде также устанавливаются Отношения или отклонения. СН1 и СН2 являются опорными источниками друг для друга, поэтому изменения амплитуды одного из каналов (как опорного источника), другим каналом будет автоматически подстраиваться. Установленные значения Отношение/отклонение опорного канала поддерживается постоянными.

Отношение: удельное значение CH2 : CH1 (операция деления);

Отклонение: значение разницы СН2-СН1(операция вычитания).

Примечание:

1. Настройки связи по амплитуде каналов СН3 с СН4 аналогичные, как для связи СН1 с СН2.

Для установки этого режи<u>ма:</u>

1) Нажмите вкладку **Ampl**, чтобы перейти от **OFF/ON**.

2) Нажмите **Туре** и перейдите к вкладкам **Ratio/Deviation**. чтобы перейти к установке Отношение/отклонение.

3) Задайте Отношение: нажмите вкладку **СН2:СН1**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу **Enter**.

4) Задайте отклонение: нажмите вкладку **СН2:СН1**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу **Enter**, ввод

• Связь по Фазе

В режиме связи по фазе также устанавливаются Отношения или отклонения. CH1 и CH2 являются опорными источниками друг для друга, поэтому изменения фазы одного из каналов (как опорного источника), другим каналом будет автоматически подстраиваться. Установленные значения Отношение/отклонение опорного канала поддерживается постоянными.

Отношение: удельное значение СН2 : СН1 (операция деления);

Отклонение: значение разницы СН2-СН1(операция вычитания).

Примечание:

1. Настройки связи по амплитуде каналов СН3 с СН4 аналогичные, как для связи СН1 с СН2.

Для установки этого режима:

1) Нажмите вкладку **Phase**, чтобы перейти от **OFF/ON.**

2) Нажмите **Туре** и перейдите к вкладкам **Ratio/Deviation**. чтобы перейти к установке Отношение/отклонение.

3) Задайте Отношение: нажмите вкладку **СН2:СН1**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу **Enter**.

4) Задайте отклонение: нажмите вкладку **СН2:СН1**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу **Enter**, ввод

• Значок на дисплее режимов связи

При включении сопряжения каналов, значок сопряжения появится справа от списка отображаемых параметров формы сигнала на главной странице (скрепка). Это показано на рисунке ниже.

	? 💣										4 🗗
	CH1		CH2		ļ	СНЗ		CH	14	Uti	lity
	Continue Sine	2	Modulate	•	Sv	veep		Burst		Ch	annel
Ba	ise Sin	Square	Remp	Pulse	∽~ _{Arb}	Harmonic	Moise Noise	DC		Out	OFF
Fr	req	1.000,000	,000 kHz	д						INV	OFF
A	mpl	100.0 mVj	р	e							
01	ffset	0.0 mV								Load	HighZ
Pł	hase	0.000 °		e							
N	oiseSum	OFF									
1 1			2 HighZ		\sim Gontinu	3 #			inue 4		

Рисунок 8.2.2.

9.2.3 Объединение каналов

Функция комбинирования сигналов каналов накладывает базовые сигналы, случайный шум, сигналы модуляции, свип-сигналы, пакетные сигналы и т.д., сигналы **EasyPulse** и сигналы **TrueArb**.

Для настройки объединения сигналов:

Нажмите **Utility**, далее вкладку **Coupling** для выполнения соответствующих настроек:

выходной порт СН1 может быть выбран для вывода сигнала СН1 или СН1+СН2;

выходной порт CH2 может быть выбран для вывода формы сигнала CH2 или CH1+CH2.

выходной порт CH3 может быть выбран для вывода формы сигнала CH3 или CH3+CH4.

выходной порт CH4 может быть выбран для вывода формы сигнала CH4 или CH3+CH4.

Вы также можете установить вывод отдельных каналов или комбинированного сигнала, щелкнув соответствующий сегмент непосредственно на блок-схеме на вкладке **Utility**,

Нажмите **CH1 Merge**, чтобы перейти к **OFF/CH1+CH2**. Интерфейс объединения **CH1+CH2** показан на рисунке ниже.

Рисунок 8.1.14

Настройки с объединения CH1: CH1+CH2, Интерфейс формы сигнала имеет символ Merged: CH1 + CH2 и отображаться в левом углу главной страницы.

Аналогично, комбинация каналов CH2, CH3 и CH4 такая же, как и у CH1.

Примечание: Связь по амплитуде недоступна, если включено объединение каналов.

9.2.4 Режим частотомера

Генератор имеет встроенный частотомер внешнего входного сигнала на 8 разрядов, диапазон измерений частоты 100 мкГц ~ 800 МГц.

Он может измерять внешний входной сигнал частоты, периода, отношения, положительного и отрицательного импульса и т. д., и суммировать результаты измерений. Прибор автоматически измеряет максимальное, минимальное, среднее значение и стандартное отклонение.

Настройки меню показаны в таблицах ниже.

Функциональное меню	Настройка	Параметр	Описание
	Switch	OFF/ON	
Frequency counter	Coupling	AC, DC	Чтобы обеспечить точность измерений, включайте АС при измерении высокой частоты входного сигнала; Включите DC , когда частота измерения низкая
	Trigger Level	-2.5V~2.5V	Уровень входного сигнала
	Sensitivity	0%-100%	Чувствительность
	High Frequency Reject	OFF/ON	ВЧ фильтр

Для проведения измерений проведите соответствующие настройки:

Нажмите **Utility** →, далее вкладку **Counter**. Это показано на рисунке ниже.

?	Ċ					ψ¢	
CH1		CH2	CH3	CH4	U	Itility	
<u> </u>	_						
Channel	Switch	OFF	Freg				
	Coupling AC		i i eq	Tieq			
Coupling Trial ex		el 0 mV	Peroid				
	Sensitivity 100 %		Duty				
Merge			PPulse				
	HFRejeo	ct Off	NPulse				
Counter		Freq	PWidth	NWidth	Duty		
	Value						
10000000	Mean						
Digital	Min					Clear	
	Max						
Net Works	Std						
System	Sum 0						
1 Highz		Continue 2 HighZ	Continue 3 His		4 Highz		

Рисунок 8.1.15

1) Включение измерения

Нажмите вкладку **Switch**, чтобы перейти от **OFF/ON.** По умолчанию установлен OFF

3) Нажмите **Coupling**, выбрать **AC/DC**. По умолчанию установлено DC

5) Задайте Уровень триггера

6) Нажмите TrigLevel, Откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу ввода. Значение по умолчанию — 0 В.

4) Задайте Чувствительность

Нажмите **Sensitivity**, откройте виртуальную цифровую клавиатуру для ввода цифр и нажмите клавишу ввода. Значение по умолчанию — 100%.

7) Подавление высоких частот

Нажмите **HFReject** чтобы перейти от OFF/ON .По умолчанию установлен OFF. 8) Очистка результатов измерения и перезапуск нового измерения. Нажмите **Clear**, чтобы удалить все результаты измерений и перезапустить.

9.2.5 Системные установки

Настройка системы поддерживает дополнительные функции устройства, такие как проверка состояния системы, настройка языка и звукового сигнала, а также более сложные настройки, такие как самокалибровка, обновление прошивки и т.д.

Функциональное Настройка Параметр Описание меню Chinese, Language Язык сообщений English Разделитель Comma, Space, Separator запятая, пробел, None отсутствие OFF/ON Звук нажатия Beep 30%, 40%, 50%, 60%, Backlight Подсветка 70%, 80%, 90%, OFF,5min,15 Screen Saver min,30 min,60 Свернуть экран min Internal, Clock Source Часы источник External System Clock Output OFF/ON Часы выход После включения Default, Last, питания Set1, Se2, Power On загрузить Set3, Set4, сохраненные Set5 настройки Svnc, Синхроннная, Phase Independent независимая SingleChannel, Управление Manual AllChannel. каналами Сохранить настройки С Save предварительным просмотром Вызов настроек Default по умолчанию

Настройки меню показаны в таблицах ниже.

Нажмите **Utility** далее вкладка **System**, чтобы выполнить соответствующие системныенастройки:

1) Выбо<u>р Языка</u>

Нажмите **Language** «Язык», чтобы переключаться между китайским и английским языками **Chinese/English**. Для этой активации установки потребуется перезапустить прибор.

2) Выбор Разделитея

Нажмите на **Separator**, чтобы перейти к выбору разделителя, применяемого при отображении между параметрами канала.

3) Звук нажатия

Нажмите **Веер** чтобы перейти от **OFF/ON**.

4) Подсветка

Нажмите клавишу **Backligh**t, чтобы перейти к подсветке экрана «30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

5) Время Заставки

Нажмите **Screen Saver**, чтобы выбрать время отключения экрана 5 мин, 15 мин, 30 мин и 60 мин. Прибор отключит экран, повторно заставку можно вызвать нажатием любой клавиши.

6) Установка вр<u>емени синхрон</u>изации

Нажмите клавишу **Clock Source**, чтобы перейти от внутреннего к внешнему источнику синхронизации. **Internal/External**.

Внутренний: поддерживается источник тактовой частоты 10 МГц.

Внешний: получите внешний тактовый сигнал через разъем **10 МГц Іп** на задней панели (частота 10 МГц, амплитуда TTL).

Если прибор принял с разъема внешний тактовый сигнал не в пределах допустимых параметров , то на экране появится уведомление. Внешние часы недействительны. И отобразит символ вверху справа.

Если прибор принял с разъема внешний тактовый сигнал в пределах допустимых параметров , то на экране появится уведомление .Внешние часы действительны.

7) Активация выхода тактовой частоты

Нажмите **Clock Output**, чтобы перейти от **OFF/ON**. и включите выход синхронизации на разъем **10MHz Out** для внешнего потребителя.

9.2.6 Синхронизация нескольких приборов

Функция синхронизации нескольких устройств позволяет объединить несколько генераторов серии **АКИП-3433** в единую систему, с синхронизацией частоты и выравниванием фазы выходных сигналов.

Для синхронизации подключите первый прибор через разъем **10 МГц Out**, вкладку **Clock Output** на нем переведите в состояние **ON**), к входному разъему **10 МГц In** второго прибора, вкладку **Clock source** переведите на нем в состояние **External** и установите для них обоих одинаковую выходную частоту для выполнения синхронизации.

Для настройки этого режима на многоприборных системах необходимо выполнить те же шаги.

1) Настройка Фазы сигнала

Нажмите **Phase step through**, для выбора «Фазовый шаг» через вкладку **Sync/Independent** «Синхронизировано/Независимо».

Синхронизировано : означает, что начальная фаза четырех каналов связана. Независимый: : означает, что начальная фаза каждого канала независима.

2) Загрузка при включении питания

Указывает после включения питания прибора загрузить какие сохраненные настройки

Нажмите «Вкл.», чтобы перейти к пунктам **Default**, **Last**, **Set1**, **Set2**, **Set3**, **Set4**, **Set5**

«По умолчанию», «Последний», «Установить1», «Установить2», «Установить3», «Установить4» и «Установить5».

Установите начальные параметры загрузки , выберите настройки предварительного просмотра или функцию сохранения.

3) Управление каналами

Функция **AllChannel** позволяет работать на всех каналах одновременно, когда источник запу<u>ска кана</u>ла включен.

Нажмите **Manua**, чтобы перейти к вариантам **SingleChannel/ AllChannel**. «Один канал»/«Все каналы».

Примечание : Когда источник запуска включен в режиме Sweep или Burst, функция SingleChannel может работать только на текущем канале. Функция AllChannel может работать на всех каналах одновременно, когда источник запуска канала включен.

4) Сохранение настроек для предварительного просмотра

Нажмите **Save**, чтобы сохранить текущие настройки в качестве настроек предварительного просмотра. Можно выбрать сохранение в Set1, Set2, Set3, Set4 и Set5.

5) Вызов настроек по умолчанию

Нажмите **Default**, чтобы восстановить заводские настройки прибора, вывести диалоговое окно и или отменить **Cancel/Ok** «Отмена/Да».

6) Вывод информации о системе

Нажмите **Abou**t для отображение нат экране дисплея названия модели, информации о версии, адреса компании и т. д.

9.3 Настройка локальной сети

Чтобы настроить порт LAN выполните:

Функциональ ное меню	Настро йка	Парам етр	Описан ие
	DHCP	OFF/O N	Отключ ите, чтобы установить следующую опцию
System	ІР- адрес		
	Маска		
	Шлюз		
	MAC		

Нажмите **Utility**, вкладка **System**, чтобы войти в интерфейс настроек (с правой стороны окна).

1) **DHCP** режим доступа к серверу **OFF/ON** для установки динамического IPадреса.

2) ІР-адрес статический

Формат IP-адреса: nnn.nnn.nnn, первый из диапазона nnn может быть установлен на 1~233, второй 0~255. Рекомендуется обратиться к администратору сети, чтобы получить доступный IP-адрес. Нажмите IP или нажмите на цифровую клавиатуру, чтобы ввести цифры. Эти настройки будут сохранены в энергонезависимой памяти, и прибор автоматически применит их при следующей загрузке.

3) Маска

Формат маски подсети: nnn.nnn.nnn, диапазон nnn может быть установлен от 0 до 255. Рекомендуется обратиться к администратору сети Интернет, чтобы получить доступный адрес маски подсети. Нажмите «Маска» или нажмите цифровую клавиатуру, чтобы ввести цифры. Эти настройки будут сохранены в энергонезависимой памяти, и прибор автоматически применит их при следующей загрузке.

4) Шлюз

Формат шлюза: nnn.nnn.nnn, Предлагается, чтобы вы запросили у интернетадминистратора доступный шлюз. Нажмите Gateway или нажмите на цифровую клавиатуру, чтобы ввести цифры. Эти настройки будут сохранены в энергонезависимой памяти, и инструмент автоматически применит их при следующей загрузке.

5) MAC

МАС-адреса нумеруются от нуля и последовательно увеличиваются на единицу, поэтому пространство МАС-адресов памяти увеличивается линейно. Оно

представлено как двоичное число, целое число без знака и записывается как шестнадцатеричное число.

10 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЫХОДНОГО СИГНАЛА

10.1 Режимы модуляции выходного сигнала

Генераторы **АКИП 3433** могут выводить модулированный сигнал из одного канала или нескольких каналов одновременно. Выходной модулированный сигнал состоит из сигнала несущей частоты и модулирующего сигнала. Сигнал несущей частоты может быть синусоидальный, прямоугольный, произвольный (кроме постоянного тока) или импульсный. Выходной модулированный сигнал может быть с внутренней модуляцией или с внешней модуляцией.

Типы модуляции: всего 15 типов - AM, FM, PM, DSB-AM, QAM, ASK, FSK, 3FSK, 4FSK, PSK, BPSK, QPSK, OSK, PWM, SUM

Для ознакомления с этими функциями рассмотрим во всех примерах применение модуляции к каналу **CH1**.

10.1.1 Амплитудная модуляция (АМ)

АМ состоит из сигнала несущей частоты и модулирующего сигнала, при этом амплитуда сигнала несущей частоты изменяется на величину амплитуды сигнала модуляции.

Режимы модуляции для каждого канала независимы, для каждого канала можно установить одинаковые или разные режимы модуляции. Рассмотрим далее

Выбор модуляции АМ

Нажмите последовательно вкладки **СН1**→**Мodulate**→**АМ**, чтобы включить модуляцию АМ, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты АМ может иметь форму: синусоидальную, прямоугольную, пилообразная, импульсную и произвольную (кроме DC), по умолчанию используется синусоида. После выбора модуляции АМ нажмите вкладку **Base**, чтобы отобразить Сигнал несущей частоты на дисплее справа .Это показано на рисунке.

Настройки частоты сигнала несущей частоты

Диапазон частот сигнала несущей частоты может быть установлен по-разному, основная частота по умолчанию составляет 1 кГц, см. Таблицы для настройки частоты различных форм сигнала несущей частоты.

Диапазон частот	Каналы С	11,2	
Сигнал несущей частоты	АКИП-	АКИП-	АКИП
	3433/1	3433/2	-3433/3
Синусоидальная форма	1мкГц-	1мкГц-	1мкГц
	350МГц	500МГц	-600МГц
Прямоугольная форма	1мкГц-	1мкГц-	1мкГц
	120МГц	160МГц	-200МГц
Пилообразная треугольная	1мкГц-	1мкГц-	1мкГц
	20МГц	30МГц	-30МГц
Импульсная форма	1мкГц-	1мкГц-	1мкГц
	120МГц	160МГц	-200МГц
Произвольная форма	1 мкГц -80 МГц	1 мкГц -100 МГц	1 мкГц - 100 МГц

Таблица 9.1.11 Частота сигнала несущей частоты

Диапазон частот	Каналы СНЗ,4		
Сигнал несущей частоты	АКИП-	АКИП-	АКИП
	3433/1	3433/2	-3433/3
Синусоидальная форма	1мкГц-	1мкГц-	1мкГц
	160МГц	200МГц	-200МГц
Прямоугольная форма	1мкГц-	1мкГц-	1мкГц
	50Гц	50МГц	-60МГц
Пилообразная треугольная	1мкГц-	1мкГц-	1мкГц
	8МГц	10МГц	-10МГц
Импульсная форма	1мкГц-	1мкГц-	1мкГц
	50МГц	60МГц	-60МГц
Произвольная форма	1 мкГц -80 МГц	1 мкГц -100 МГц	1 мкГц - 100 МГц

Поверните многофункциональную ручку и клавишу направления или нажмите вкладку **ModFreq**, чтобы открыть визуальную цифровую клавиатуру и задать частоту сигнала несущей частоты.

Выбор источника модуляции

Генератор выбирать внутренний или внешний источник модуляции. При включении модуляции АМ источником модуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc,** чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки модуляции **АМ**.

1) Выбор внутреннего источника модуляции

Когда источник модуляции внутренний, форма модулирующего сигнала может быть синусоидальной, прямоугольной, нарастающей пилообразной, нисходящей пилообразной произвольной и шумовой волной. По умолчанию используется синусоидальная волна. При включении модуляции **AM** по вкладке **ModWave** и для выбора синусоиды, вращайте многофункциональную ручку или нажмите вкладку **Sine**, чтобы выбрать форму модулирующего сигнала со следующими параметрами в интерфейсе настройки модуляции:

Прямоугольная волна: коэффициент заполнения 50%

Восходящая пилообразная : симметрия 100%

□ Нисходящая пилообразная симметрия 0%

П Произвольная волна: длина произвольного сигнала ограничена 4 кбит/с методом выбора точки автоматически

Шумовая : белый гауссовский шум

2) Выбор внешнего источника модуляции

Если источник модуляции выбран внешний, волна модуляции и частота будут недоступны для редактирования в списке параметров. Используйте внешнюю форму сигнала для модуляции сигнала несущей частоты .

Глубина модуляции АМ управляется уровнем сигнала ±5 В на внешнем аналоговом входном разъеме модуляции (разъем **Modulation In**) на задней панели.

Например, если установить глубину модуляции на 100 %, выход амплитуды АМ будет максимальным, когда внешний сигнал модуляции равен +5 В; выход амплитуды АМ будет минимальным, когда внешний сигнал модуляции равен -5 В.

Настройки частоты модулирующего сигнала

Когда источник модуляции выбран внутренний, он может установить частоту формы модулирующего сигнала, а диапазон частот составляет диапазон от 1 мкГц до 2 МГц, по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции.

Когда источник модуляции внешний, волна модуляции и частота будут недоступны для редактирования в списке параметров. Используйте внешнюю форму сигнала для модулирующего сигнала. Диапазон частот входного внешнего модулирующего сигнала составляет от 0 Гц до 50 кГц.

Настройки глубины модуляции

Глубина модуляции указывает на изменение амплитуды, выражается в %. Диапазон глубины модуляции АМ может быть установлен в диапазоне от 0% до 120%, диапазон по умолчанию составляет 100%.

Если глубина модуляции составляет 0%, то выходная амплитуда (половина амплитуды сигнала несущей частоты), если глубина модуляции составляет 100%, выходная амплитуда будет изменяться в соответствии с формой модулирующего сигнала. Когда глубина модуляции превышает 100%, прибор не будет выводить напряжение от пика до пика более ±5 В (подключите к клемме 50 Ом). Поверните многофункциональную ручку и клавишу направления или нажмите вкладку **МоdDepth**, чтобы открыть визуальную цифровую клавиатуру для ввода значений.

Когда источник модуляции внешний, выходная амплитуда управляется уровнем сигнала ±5 В на внешнем аналоговом входном разъеме модуляции (разъем **Modulation In**) на задней панели.

Например, если установить глубину модуляции на 100%, выходная амплитуда АМ будет максимальной, т.е. когда внешний сигнал модуляции составляет +5 В; если установить глубину модуляции на 0%, выходная амплитуда АМ будет минимальна, т.е. когда внешний модулирующий сигнал равен -5 В.

Подробный пример

Заданные параметры сигнала следующие: режим модуляции АМ, модулирующий сигнал -внутренняя синусоидальная волна 200 Гц, сигнал несущей частоты с частотой 10 кГц, амплитудой 200 мВпик-пик, коэффициент заполнения 45%, глубину модуляции 80%. Шаги настройки следующие:

1) Включите режим модуляции АМ: нажмите последовательно вкладки **CH1**→**Modulate**→**AM** соответственно.

?				\$₽
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep	Burst	Channel
Base VVV V Type AM	((IV))); : : ////// dsb-an gan ask			Out OFF
ModSrc Inte	ernal			INV OFF
ModWave Sine ModFreq 100	e .000,000 Hz		Mar Al	Load HighZ
ModDepth 100	.00 %	$\vee \vee \vee \vee$		Сору СН1←СН2
		* 4 *		
1 HighZ	AM 2 HighZ	Continue 3 High	Z Continue 4 High	

2) Установить параметр модулирующего сигнала

На основе шага 1) нажмите вкладку **ModFreq**, чтобы открыть визуальную цифровую клавиатуру и ввести 200 Гц.

3) Установите параметр сигнала несущей частоты

Нажмите последовательно вкладки **Base** - **Square** , чтобы выбрать прямоугольную форму сигнала несущей частоты (по умолчанию установлена **Sine**). Нажмите вкладку **Freq** , чтобы открыть визуальную цифровую клавиатуру и ввести 10 кГц.

Нажмите вкладку **Атрі**, чтобы открыть визуальную цифровую клавиатуру для ввода 200 мВрр.

Нажмите вкладку **Duty**, чтобы открыть визуальную цифровую клавиатуру для ввода 45%.

Это показано на рисунке ниже.

?				\$ G
СН1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep	Burst	Channel
Base Type Sine S	Gquere Ramp Pulse	~~~ _{Arb}		Out OFF
Freq 1.00	0,000,000 kHz			INV OFF
Ampl 100	0 mVpp			
Offset 0.0	mV			Load HighZ
Phase 0.00	0 °			Сору СН1←СН2
Duty 50.0	00,000 %			
NoiseSum OFF				
1 HighZ	AM 2 HighZ	Continue 3 HighZ	Continue 4	

4) Установите глубину модуляции

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс модуляции АМ и задать глубину модуляции

?				\$ \$
СН1	CH2	СНЗ	CH4	Utility
Continue	Modulate ^{AM}	Sweep	Burst	Channel
Base Type	Square Ramp Pulse	~~~ _{Arb}		OutOFF
Freq 10.0	000,000,00 kHz			INV OFF
Ampl 200	0.0 mVpp			
Offset 0.0	mV			Load
Phase 0.0	00 °			Сору СН1←СН2
Duty 45.0	000,000 %			
NoiseSum OFF				
1 HighZ	AM 2 HighZ	Continue 3 HighZ	Continue 4	

Нажмите вкладку **ModDepth**, чтобы открыть визуальную цифровую клавиатуру для ввода 80%.

5) Включите выходной канал

Нажмите **Channel Out** в положение **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной канал. Его также можно включить в интерфейсе **Utility**, нажмите Utility → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала **1** включен.

Форма модулированного сигнала АМ-модуляции, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.1

10.1.2 Частотная модуляция (FM)

В режиме частотной модуляции модулированный сигнал состоит из сигнала несущей частоты и модулирующего сигнала. Частота сигнала несущей частоты изменяется амплитудой модулирующего сигнала. Режимы модуляции для каждого канала независимы, они могут устанавливаться одинаковыми или разными для каждого канала. Рассмотрим далее.

Выбор FМ-модуляции

Нажмите кнопки **СН1**, далее вкладки → **Modulate** → **FM**, чтобы включить FMмодуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

	?				\$ G
	СН1	CH2	СНЗ	CH4	Utility
	Continue	Modulate Fil	Sweep	Burst	Channel
	Base Type AM	₩₩₩₩~ :1: \\\\\\\\ dsb-am qam ask			Out OFF
	ModSrc Inte	ernal			INV OFF
	ModWave Sine	e	MATT		Load High7
	ModFreq 100	0.000,000 Hz			
	FreqDev 1.00	00,000,000 kHz		\mathbb{N}	Сору СН1—СН2
				· · · · ·	
1		FM 2 HighZ	Continue 3 HighZ	Continue 4 Hig	hZ Continue

Рисунок 9.3.1

Выбор формы сигнала несущей частоты

Сигнал несущей частоты (как в случае AM): синусоидальная, прямоугольная, пилообразная, импульсная и произвольная (кроме постоянного тока), по умолчанию используется синусоида **Sine**.

После выбора модуляции FM нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-модуляции.

Выбор источника модуляции

Генератор сигналов может выбирать внутренний или внешний источник модуляции. При включении модуляции FM источником модуляции по умолчанию

является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc,** чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки модуляции FM.

1) Выбор внутреннего источника модуляции.

Когда источник модуляции внутренний, форма модулирующего сигнала может быть синусоидальной, квадратной, восходящей пилообразной, нисходящей пилообразной произвольной и шумовой волной. По умолчанию используется синусоидальная волна. При включении модуляции FM по вкладке **ModWave** и для выбора синусоиды, вращайте многофункциональную ручку или нажмите вкладку **Sine**, чтобы выбрать форму модулирующего сигнала со следующими параметрами в интерфейсе настройки модуляции:

Прямоугольная волна: коэффициент заполнения 50%

Восходящая пилообразная : симметрия 100%

□ Нисходящая пилообразная симметрия 0%

Произвольная волна: длина произвольного сигнала ограничена 4 кбит/с методом выбора точки автоматически

🛛 Шумовая волна: белый гауссовский шум

2) Выбор внешнего источника модуляции.

Если источник модуляции выбран внешний, форма модулирующего сигнала и частота будут недоступны для редактирования в списке параметров. Используйте внешнюю форму сигнала для модуляции сигнала несущей частоты.

Смещение FM управляется уровнем сигнала ±5 В на входном разъеме внешней аналоговой модуляции (разъем **Modulation In** на задней панели).

Частота выходного сигнала при положительном уровне сигнала больше частоты сигнала несущей частоты, при отрицательном уровне сигнала меньше частоты сигнала несущей частоты, более низкий уровень внешнего сигнала дает меньшее отклонение.

Например, если установить девиацию частоты на 1 кГц, то выходная частота FM увеличится на 1 кГц к текущей основной частоте, когда внешний модулированный сигнал равен +5 В; и выходная частота FM уменьшится на 1 кГц из текущей основной частоты, когда внешний модулированный сигнал равен -5 В.

Настройки частоты модулирующего сигнала

Когда источник модуляции выбран внутренний, он может установить частоту формы модулирующего сигнала в диапазоне частот от 1 мкГц до 2 МГц, диапазон по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции FM.

Когда источник модуляции внешний, форма модулирующего сигнала и частота будут недоступны для редактирования в списке параметров. Используйте внешнюю форму сигнала для модуляции сигнала несущей частоты. Диапазон частот входного внешнего модулирующего сигнала составляет от 0Гц~50кГц.

Настройки девиации модулирующей частоты

Девиация частоты указывает на изменение частоты между частотой модулированной FM-сигнала и частотой сигнала несущей частоты. Диапазон девиации FM может быть установлен от 0 мкГц до половины максимальной текущей частоты сигнала несущей частоты. Диапазон по умолчанию составляет 1 кГц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции.

1) Девиация частоты должно быть ≤ частоты сигнала несущей частоты. Если отклонение частоты больше основной частоты, генератор функций/произвольных сигналов автоматически ограничивает отклонение до максимума, допускаемого текущей основной частотой.

2) Сумма девиации частоты и частоты сигнала несущей частоты должна быть ≤ максимума текущей основной частоты. Если значение девиации частоты допустимо, генератор автоматически ограничивает девиацию до максимума, допускаемого текущей основной частотой.

Подробный пример

Заданные параметры сигнала следующие:

режим модуляции FM,

модулирующий сигнал -внутренняя прямоугольная волна с частотой 2 кГц,

сигнал несущей частоты -синусоидальная волна с частотой 10 кГц, амплитудой 100 мВпик,

девиация частоты на 5 кГц.

Шаги настройки следующие:

1) Включите режим частотной модуляции **FM**: нажмите **CH1**→**Modulate**→**FM** соответственно.

2) Установите параметр модулирующего сигнала

На основе шага 1) нажмите вкладку **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода 2 кГц.

ŝ	?				Ý 🗗
	CH1	CH2	СНЗ	CH4	Utility
	Continue	Modulate FM	Sweep	Burst	Channel
	Base ////~ // Type AM C	₩~4₩^ : : /\///// dam ask			Out OFF
	ModSrc Inte	rnal			INV OFF
	ModWave Sine	2	/		
	ModFreq 2.00	00,000,000 kHz		χ	Load HighZ
	FreqDev 1.00	00,000,000 kHz			Сору СН1←СН2
			\lor		
1		FM 2 HighZ	\sim 3 HighZ	Continue 4 High	

3) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

Нажмите **Freq**, чтобы открыть визуальную цифровую клавиатуру и ввести 10 кГц.

?				Ý 🗗
CH1	CH2	CH3	CH4	Utility
Continue	Modulate Fil	Sweep	Burst	Channel
Base Type	lquare Ramp Pulse	Arb		Out OFF
Freq 10.0	00,000,00 kHz			INV OFF
Ampl 100.	0 mVpp		$\land \land \land$	Land Uirk7
Offset 0.0 r	nV		\times	
NoiseSum OFF			X	Сору СН1⊢СН2
		VV	V V V	
1 HighZ	FM 2 HighZ	Continue 3 HighZ	Continue 4 Hig	

4) Установите девиацию частоты

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс модуляции и задать девиацию частоты.

Нажмите вкладку **FreqDev**, чтобы открыть визуальную цифровую клавиатуру для ввода 5 кГц.

?				\$ t <mark>1</mark>
CH1	CH2	CH3	CH4	Utility
Continue	Modulate FM	Sweep	Burst	Channel
Base VVV V Type AM D	₩~₩₩ : : /\//// xb-am qam ask			Out OFF
ModSrc Inter	rnal			
ModWave Sine		MA		
ModFreq 2.00	0,000,000 kHz			Load
FreqDev 5.00	0,000,000 kHz		\mathcal{N}	Сору СН1-СН2
		V V V		
1 HighZ	FM 2 HighZ	\sim 3 HighZ	Continue 4 High	

5) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала ЧМ-модуляции, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.2

10.1.3 Фазовая модуляция (РМ)

В режиме фазовой модуляции модулированный сигнал состоит из сигнала несущей частоты и модулирующего сигнала .Фаза сигнала несущей частоты будет изменена фазой модулирующего сигнала. Режимы модуляции для каждого канала независимы, они могут устанавливаться одинаковыми или разными для каждого канала. Рассмотрим далее.

Выбор модуляции РМ

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **РМ**, чтобы включить РМмодуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты : синусоидальная, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида. После выбора модуляции РМ нажмите **Base**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-модуляции.

Выбор источника модуляции

Генератор может выбирать внутренний или внешний источник модуляции. При включении модуляции РМ источником модуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки модуляции РМ.

1) Выбор внутреннего источника модуляции.

Когда источник модуляции внутренний, форма модулирующего сигнала может быть синусоидальной, квадратной, восходящей пилообразной, нисходящей пилообразной произвольной и шумовой волной. По умолчанию используется синусоидальная волна. При включении модуляции РМ по вкладке **ModWave** и для выбора синусоиды, вращайте многофункциональную ручку или нажмите вкладку **Sine**, чтобы выбрать форму модулирующего сигнала со следующими параметрами в интерфейсе настройки модуляции:

Прямоугольная волна: коэффициент заполнения 50%

□ Восходящая пилообразная : симметрия 100%

□ Нисходящая пилообразная симметрия 0%

Произвольная волна: длина произвольного сигнала ограничена 2 кбит/с методом выбора точки автоматически

Шумовая волна: белый гауссовский шум

2) Выбор внешнего источника модуляции.

Если источник модуляции внешний, волна модуляции и частота будут недоступны для редактирования в списке параметров. Смещение РМ управляется уровнем сигнала ±5 В на внешнем аналоговом входном аналоговым разъеме модуляции (разъем **Modulation In**) на задней панели.

Например, если установить дивиацию фазы на 180°, что равно +5В внешнего модулированного сигнала, более низкий уровень внешнего сигнала приводит к меньшей девиации.

Настройки частоты модулирующего сигнала

Когда источник модуляции выбран внутренний, он может устанавливать частоту формы модулирующего сигнала, а также частоту в диапазоне между1мкГц~2 МГц, по умолчанию 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь **ModFreq** Нажмите вкладку для вызова визуальной цифровой клавиатуры для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции РМ.

Если источник модуляции выбран внешний, форма модулирующего сигнала и частота будут недоступны для редактирования в списке параметров. Используйте для модуляции сигнала несущей частоты внешний сигнал. Диапазон частот входного внешнего модулирующего сигнала составляет от 0 Гц до 50 кГц.

Настройки модулированной фазовой девиации

Девиация фазы указывает на изменение отклонения фазы между фазой модулированного РМ сигнала и фазой сигнала несущей частоты. Диапазон отклонения фазы может быть установлен в диапазоне 0°~360°, диапазон по умолчанию составляет 180°. Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции.

Подробный пример

Заданные параметры сигнала следующие:

режим модуляции РМ,

модулирующий сигнал - внутренняя синусоидальная волна частотой 200 Гц,

сигнал несущей частоты -синусоидальная волна с частотой 900 Гц, амплитудой 100 мВпик,

девиация отклонение фазы на 200°

Шаги настройки следующие:

1) Включите режим фазовой модуляции РМ: нажмите последовательно вкладки **CH1**→**Modulate**→**PM** соответственно.

?				\$ t a
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate PM	Sweep	Burst	Channel
Base Type AM D	₩~\\\\\\\ кв-ам дам аsk			Out OFF
ModSrc Inter	rnal			INV OFF
ModWave Sine		AMAR		Lood High 7
ModFreq 100.	000,000 Hz		XHAAA	
PhaseDev 180.	00 °			Сору СН1⊢СН2
		VVVV	V V V V V	
1 HighZ	PM 2 HighZ	Continue 3 HighZ	Continue 4 Hig	

2) Установите параметр модулирующего сигнала

На основе шага 1) нажмите вкладку **ModFreq**, чтобы открыть визуальную цифровую клавиатуру и ввести 200 Гц.

3) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

?				\$ G
CH1	CH2	CH3	CH4	Utility
Continue	Modulate PM	Sweep	Burst	Channel
Base Type	quare Ramp Arb			Out OFF
Freq 1.00	0,000,000 kHz			
Ampl 100.	0 mVpp	MAX		
Offset 0.0 m	nV			Load HighZ
Phase 0.00	0 °		\mathbb{N}/\mathbb{N}	Сору СН1-СН2
NoiseSum OFF		V V	X Y V	
1 HighZ	2 HighZ	Continue 3 HighZ	Continue 4	HighZ Continue

Нажмите **Freq**, чтобы открыть визуальную цифровую клавиатуру и ввести значение 900 Гц.

4) Установите девиацию фазы

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс модуляции и задать девиацию фазы.

Нажмите вкладку **PhaseDev**, чтобы открыть визуальную цифровую клавиатуру для ввода 200°.

<u></u>	}? 💣				\$ t a
	CH1	CH2	СНЗ	CH4	Utility
	Continue	Modulate PM	Sweep	Burst	Channel
	Base Type AM	₩~4₩^ : : ////// dam ask			Out OFF
	ModSrc Inte	rnal			INV OFF
	ModWave Sine		MAX		Land High 7
	ModFreq 200.	.000,000 Hz	Қ. `	$\langle \rangle $	
	PhaseDev 200.	.00 °			Сору СН1←СН2
			V V	V V	
1		PM 2 HighZ	Continue 3 HighZ	Continue 4 High	

5) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

	?				∳ Ę
	СН1	CH2	CH3	CH4	Utility
	Continue	Modulate PM	Sweep	Burst	Channel
	Base Type	₩~₩₩ :1: \\\\\\\\ sb-am qam ask			Out ON
N	ModSrc Inter	rnal			
N	ModWave Sine		Λ		
N	ModFreq 200.	000,000 Hz	Қ	$\setminus \setminus $	
F	PhaseDev 200.	00 °			Сору СН1⊢СН2
			V V		
1 +	lighZ	PM 2 HighZ	∼ Continue 3 HighZ	Continue 4 His	

Форма сигнала фазовой модуляции РМ, наблюдаемая через осциллограф, показана на рисунке ниже.

10.1.4 Двухполосная амплитудная модуляция (DSB-AM)

В режиме двухполосной амплитудной модуляции (DSB-AM) модулированный сигнал DSB сигнал имеет две боковые полосы с модулирующим сигналом и отсутствующую несущая. DSB, по сути это AM модуляция, у которой удален (вырезан, подавлен) сигнал несущей частоты.

Режимы модуляции для каждого канала независимы, они могут устанавливаться одинаковыми или разными для каждого канала. Рассмотрим далее.

Выбор DSB-AM модуляции

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **DSB-AM**, чтобы включить DSB-AM -модуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при DSB-AM: синусоидальная, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора модуляции DSB-AM нажмите **Base**, чтобы отобразить несущую волну с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-модуляции.

Выбор источника модуляции

Генератор сигналов может выбирать внутренний или внешний источник модуляции. При включении модуляции DSB-AM источником модуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки модуляции DSB-AM.

1) Выбор внутреннего источника модуляции.

Когда источник модуляции выбран внутренний, форма модулирующего сигнала может быть синусоидальной, квадратной, восходящей пилообразной, нисходящей пилообразной произвольной и шумовой волной. По умолчанию используется синусоидальная волна. При включении модуляции DSB-AM по вкладке **ModWave** и для выбора синусоиды, вращайте многофункциональную ручку или нажмите вкладку **Sine**, чтобы выбрать форму модулирующего сигнала со следующими параметрами в интерфейсе настройки модуляции:

Прямоугольная волна: коэффициент заполнения 50%

Поднимающаяся волна рампы: симметрия 100%

Падающая волна: симметрия 0%

Произвольная волна: длина произвольного сигнала ограничена 2 кбит/с методом выбора точки автоматически

Шумовая волна: белый гауссовский шум

2) Выбор внешнего источника модуляции.

Если источник модуляции выбран внешний, форма модулирующего сигнала и частота будут недоступны для редактирования в списке параметров. Используйте для модуляции сигнала несущей частоты внешний сигнал.

Глубина модуляции DSB-AM управляется уровнем сигнала ±5 В на входном разъеме **Modulation In** внешней аналоговой модуляции на задней панели прибора.

Например, если установить глубину модуляции на 100 %, выходная амплитуда модулированного сигнала DSB-AM будет максимальной, т.е. когда внешний сигнал модуляции равен +5 В; и выходная амплитуда DSB-AM будет минимальной, когда внешний сигнал модуляции равен -5 В.

Настройки частоты модулирующего сигнала

Когда источник модуляции выбран внутренний, он может установить частоту формы модулирующего сигнала в диапазоне частот от 1 мкГц до 2 МГц, диапазон по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции DSB-AM.

Когда источник модуляции выбран внешний, форма модулирующего сигнала и частота недоступны для редактирования в списке параметров. Используйте внешнюю форму сигнала для модуляции сигнала несущей частоты. Диапазон частот входного внешнего модулирующего сигнала составляет от 0 Гц до 50 кГц.

Подробный пример

Заданные параметры сигнала следующие:

режим модуляции DSB-AM,

модулирующий сигнал -внутренняя прямоугольную волна частотой 1 кГц

сигнал несущей частоты -синусоидальная волна с частотой 2 кГц и амплитудой 2 Впик-пик,

Шаги настройки следующие:

1) Включите режим модуляции **DSB-AM** : нажмите кнопку **CH1** → далее вкладки **Modulate** →

DSB-A М, соответственно.

2) Установите параметр сигнала несущей частоты

Нажмите вкладку **Base**, чтобы выбрать квадратную форму несущей сигнала (по умолчанию установлена синусоида).

Нажмите вкладку **Freq**, чтобы открыть визуальную цифровую клавиатуру и ввести 2 кГц. Нажмите вкладку **Ampl**, чтобы открыть визуальную цифровую клавиатуру для

нажмите вкладку **Атрі**, чтобы открыть визуальную цифровую клавиатуру для ввода 2Vpp.

	?					\$ G
	CH1		CH2	СНЗ	CH4	Utility
	Continue	e (Modulate DSB-AM	Sweep	Burst	Channel
	Base Type	Square	Ramp Pulse	Arb		Out OFF
	Freq	2.000,00	00,000 kHz			
	Ampl	2.000,0	Vpp		× +11114	
	Offset	0.0 mV			A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	Phase 0.000 °				Сору СН1-СН2	
	NoiseSum	OFF				
1			2 HighZ	Continue 3 High	Z Continue	HighZ Continue

3) Установите параметр модулирующего сигнала

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться к интерфейсу модуляции DSB-AM и задать частоту модулирующего сигнала.

Нажмите вкладку **ModWave**, чтобы открыть визуальную цифровую клавиатуру для выбора прямоугольного сигнала.

Нажмите вкладку **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода 1 кГц.

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала модуляции DSB-AM , наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.4.

10.1.5 ASK (амплитудная манипуляция)

ASK - это цифровая амплитудная модуляция (манипуляция), выражается в управлении цифровыми сигналами «0» и «1» изменений амплитуды сигнала несущей частоты. И в соответствии с логикой сигнала модуляции выводить несущие сигналы с различной амплитудой. Режимы манипуляции для каждого канала независимы, он может устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипуляции ASK

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **ASK**, чтобы включить ASK - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при ASK: синусоидальная, прямоугольная, пилообразная, импульсная и произвольная (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции ASK нажмите **Ваse**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-модуляции.

Выбор источника манипуляции

Генератор сигналов может выбирать внутренний или внешний источник манипуляции. При включении манипуляции ASK источником манипуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки манипуляции ASK.

1) Выбор внутреннего источника модуляции.

Когда источник модуляции выбран внутренний, форма модулирующего сигнала представляет собой квадратный синус с коэффициентом заполнения 50%

(встроенный и нерегулируемый). Далее можно выбрать скорость переключения амплитуды модулированного сигнала с помощью настроек частоты.

2) Выбор внешнего источника манипуляции

Если источник манипуляции выбран внешний, форма и частота будут скрыты в списке параметров. Используйте внешний сигнал цифровой манипуляции для модуляции сигнала несущей частоты.

Выходная амплитуда ASK управляется логическим уровнем на разъеме внешнего сигнала цифровой манипуляции (разъем **FSK Trig**) на задней панели.

Например, выходная амплитуда модулированного сигнала равна амплитуде сигнала несущей частоты, когда внешний вход низкий «0»; выходная амплитуда модулированного сигнала меньше текущей амплитуды сигнала несущей частоты, когда внешний входной сигнал высокий «1».

Настройка частоты модулирующего сигнала

Если источник манипуляции выбран внутренний, он может устанавливать частоту формы модулирующего сигнала в диапазоне частот от 1 мкГц до 2 МГц, диапазон по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции ASK.

Подробный пример

Заданные параметры сигнала следующие:

режим манипуляции ASK,

модулирующий сигнал -внутренний логический сигнал частотой 300 Гц,

сигнал несущей частоты - синусоидальная волну с частотой 15 кГц, амплитудой 2 Впик-пик в

Шаги настройки следующие:

Примечание: можно только установить частоту этого сигнала, частота - это частота ASK. Логический сигнал настраивается прибором самостоятельно.

1) Включите режим манипуляции ASK: нажмите кнопку **СН1**→ далее вкладки **Modulate**→**ASK** соответственно.

2) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

?				\$ E
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate ASK	Sweep	Burst	Channel
Base Type	Square Ramp Pulse	W Arb		Out OFF
Freq 1.00	0,000,000 kHz			INV OFF
Ampl 100.	0 mVpp		_	
Offset 0.0 r	mV	ΙΔΑΛΛΑ	$\Lambda \Lambda \Lambda \Lambda \Lambda$	Load
Phase 0.00	0 °	V V V V		Сору СН1⊢СН2
NoiseSum OFF				
1 HighZ	ASK 2 HighZ	Continue 3 HighZ	Continue 4 Hi	

Нажмите **Freq**, чтобы открыть визуальную цифровую клавиатуру и ввести 15 кГц. Нажмите **Ampl**, чтобы открыть визуальную цифровую клавиатуру и ввести 2Vpp.

3) Установите параметр модулирующего сигнала

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться к интерфейсу манипуляции ASK и задать частоту модулирующего сигнала.

После настройки параметров сигнала несущей частоты нажмите «Тип», чтобы вернуться в интерфейс манипуляции и установить частоту.

?					Ý 🗗
CH1		CH2	СНЗ	CH4	Utility
Continue	2	Modulate ASK	Sweep	Burst	Channel
Base ~/// Type AM	\~\₩₩₩₩ DSB-AM	: : QAM ASK			Out OFF
ModSrc	Internal				INV OFF
ModFreq	100.000,0	000 Hz		Mwwww.	Load HighZ Copy CH1CH2
1 HighZ		2 HighZ	Continue 3 HighZ	Continue 4 High	

Нажмите вкладку **ModSrc**, чтобы открыть визуальную цифровую клавиатуру для ввода 300 Гц.

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

	} ?				Ý 🗗
	СН1	CH2	СНЗ	CH4	Utility
	Continue	Modulate ASK	Sweep	Burst	Channel
	Base	₩~₩₩ :1: ₩₩₩ dsb-am qam <mark>ask</mark>			Out ON
	ModSrc Inte	ernal			INV OFF
	ModFreq 300	.000,000 Hz		Thananana.	Load HighZ
			<u> </u>		Сору СН1-СН2
1	HighZ	ASK 2 HighZ	Continue 3 HighZ	Continue 4 High	

Форма сигнала манипуляции ASK, наблюдаемая через осциллограф, показана на рисунке ниже.

10.1.6 FSK частотная манипуляция

FSK –это цифровая частотная манипуляция, выражается в перемещении частоты модулированного сигнала между двумя предустановленными частотами (частоты сигнала несущей частоты и частота скачка) в соответствии с логическим уровнем модулирующего сигнала. Режимы манипуляции для каждого канала независимы, он может устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор FSK-манипуляции

Нажмите кнопку **CH1** → далее вкладки **Modulate** → **FSK**, чтобы включить FSK - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при FSK: синусоида, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции FSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-манипуляции.

Выбор источника манипуляции

Генератор сигналов может выбирать внутренний или внешний источник манипуляции. При включении манипуляции FSK источником манипуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки манипуляции FSK.

1) Выбор внутреннего источника модуляции

Когда источник манипуляции внутренний, волна манипуляции представляет собой квадратный синус с коэффициентом заполнения 50% (встроенный и нерегулируемый). Далее можно выбирать выбирать частоту сдвига между частотой сигнала несущей частоты и частотой скачка с помощью настроек частоты.

2) Выбор внешнего источника манипуляции

Если источник манипуляции выбран внешний, форма и частота будут скрыты в списке параметров. Используйте внешний сигнал для модуляции сигнала несущей частоты.

Выходная частота FSK управляется логическим уровнем на внешнем цифровом разъеме е модуляции (разъем **FSK Trig**) на задней панели.

Например, выходная частота модулированного сигнала равна частоте сигнала несущей частоты , когда внешний вход низкий «0»; выходная частота модулированного сигнала равна частоте скачка, когда внешний вход высокий «1».

Настройки частоты скачков модулирующего сигнала

Частота скачка по умолчанию составляет 10 кГц. Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **HopFreq1**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции FSK. Диапазон частоты скачка зависит от формы сигнала несущей частоты. См. <u>Таблица</u> 9.1.1. АМ-манипуляции.

Настройка частоты модулирующего сигнала

Если источник манипуляции выбран внутренний, он может устанавливать частоту сдвига между частотой сигнала несущей частоты и частотой скачка в диапазоне частот от 1 мкГц до 2 МГц, диапазон по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы открыть на дисплее визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции FSK.

Подробный пример

Заданные параметры сигнала следующие: режим манипуляции FSK сигнал несущей частоты - внутренняя синусоида частота 2 кГц, амплитуда 1 Врр частота скачка 800 Гц, частота смещения в пределах 200 Гц. Шаги настройки следующие: 1) Включите режим манипуляции FSK: нажмите кнопку **СН1**→ далее вкладки **Modulate**→**FSK** соответственно.

1) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 1Vpp.

?				\$₽
СН1	CH2	СНЗ	CH4	Utility
Continue	Modulate FSK	Sweep	Burst	Channel
Base Type Sine	Square Ramp Pulse	Arb		Out OFF
Freq	2.000,000,000 kHz			INV OFF
Ampl	1.000,0 Vpp			
Offset	0.0 mV			Load HighZ
NoiseSum	OFF			Сору СН1←СН2
		<u> </u>	<u>- 1</u> 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	
1 HighZ	FSK 2 HighZ	Continue 3 HighZ	Continue 4 H	ehZ Continue

3) Установите частоту скачка и частоту манипуляции

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс FSK манипуляции и задать частоту манипуляции.

Нажмите **ModFreq**, чтобы открыть визуальную клавиатуру и ввести 200 Гц. Нажмите **HopFreq1**, чтобы открыть визуальную клавиатуру и ввести 800 Гц.

	?				Ý 🗗
	CH1	CH2	CH3	CH4	Utility
	Continue	Modulate FSK	Sweep	Burst	Channel
	Base ////~ // Type AM C	₩~4\\{\}\ x8b-ам дам Азк			Out OFF
	ModSrc Inter	rnal			INV OFF
	ModFreq 200.	000,000 Hz	ΛΛΛΛ		
	HopFreq1 800.	000,000 Hz		$\downarrow / \downarrow / \downarrow / \downarrow $	Load
				$M \setminus / \setminus /$	Сору СН1←СН2
			<u> </u>		
1		sk 2 HighZ	Continue 3 HighZ	Continue 4 High	nZ Continue

2) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала манипуляции FSK, наблюдаемая через осциллограф, показана на рисунке ниже.

10.1.7 PSK фазовая манипуляция

Фазовая манипуляция PSK, выражается в перемещении фазы модулированного сигнала между двумя предустановленными фазами (фаза сигнала несущей частоты и фаза скачка) в соответствии с логическим уровнем модулирующего сигнала. Режимы манипуляции для каждого канала независимы, могут устанавливаться одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипуляции PSK

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **PSK**, чтобы включить PSK - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой фазы (по умолчанию 0°и не может регулироваться !) модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при PSK: синусоидальная, прямоугольная, пилообразная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции PSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-манипуляции.

Выбор источника манипуляции

Генератор сигналов может выбирать внутренний или внешний источник манипуляции. При включении манипуляции PSK источником манипуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки манипуляции PSK.

1) Выбор внутреннего источника модуляции

Когда источник манипуляции выбран внутренний, форма модулирующего сигнала представляет собой квадратный синус с коэффициентом заполнения 50% (встроенный и нерегулируемый). Далее можно выбирать выбирать частоту сдвига

между частотой сигнала несущей частоты и частотой скачка с помощью настроек частоты.

2) Выбор внешнего источника манипуляции

Если источник манипуляции выбран внешний, форма и частота будут скрыты в списке параметров. Используйте внешний сигнал для модуляции сигнала несущей частоты.

Выходная частота PSK управляется логическим уровнем на внешнем цифровом разъеме е модуляции (разъем **FSK Trig**) на задней панели.

Например, выходная фаза модулированного сигнала равна фазе сигнала несущей частоты , когда внешний вход низкий «0»; выходная фаза модулированного сигнала равна фазе скачка, когда внешний вход высокий «1».

Настройки частоты модулирующего сигнала

Если источник модуляции выбран внутренний, он может выбирать частоту сдвига между частотой сигнала несущей частоты и частотой скачка в диапазон составляет от 1 мкГц до 2 МГц, по умолчанию 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы открыть на дисплее визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции PSK.

Настройки фазы модулирующего сигнала

Режим фазовой манипуляции PSK представляет изменения между фазой модулированного сигнала и фазой сигнала несущей частоты. Диапазон фазы может быть установлен на 0°~360°, фаза по умолчанию — 180°. Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Phase**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции PSK.

Подробный пример

Заданные параметры сигнала следующие: режим манипуляции PSK сигнал несущей частоты - внутренняя синусоида частота 2 кГц, амплитуда 2 Врр частота сдвига фаз 1 кГц, сдвиг фаз 180°. Шаги настройки следующие:

1) Включите режим манипуляции PSK: нажмите кнопку **СН1**→ далее вкладки **Modulate**→**PSK** соответственно.

2) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 2Vpp.

3) Установите частоту и фазу манипуляции

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс манипуляции и задать частоту и фазу манипуляции PSK.

ŝ	?				\$ G
	CH1	CH2	CH3	CH4	Utility
	Continue	Modulate PSK	Sweep	Burst	Channel
	Base ~ v∭v~∭v Type DSB-AN	;†; \\\\\\\\\ gan ask fi			Out OFF
	ModSrc Inte	rnal			INV OFF
	ModFreq 100. Phase 0.00	000,000 Hz			Load HighZ
					Сору СН1-СН2
1	HighZ F	PSK 2 HighZ	Continue 3 HighZ	Continue 4 H	

Нажмите **ModFreq**, чтобы открыть визуальную клавиатуру и ввести 1 кГц. Нажмите **Phase**, чтобы открыть визуальную клавиатуру и ввести 180°.

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

?				Ý 🗗
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate PSK	Sweep	Burst	Channel
Base ~ viiii/~/ii/ Type DSB-AN	;†; gan ask fi			Out ON
ModSrc Inter	rnal			INV OFF
ModFreq 1.00	0,000,000 kHz		\backslash	Lood High 7
Phase 180.	000 °		Y,	
				Сору СН1—СН2
1 HighZ	PSK 2 HighZ	Continue 3 HighZ	Continue 4 Hig	

Форма сигнала манипуляции PSK, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.7.

10.1.8 3FSK трехпозиционная частотная манипуляция

В режиме 3FSK трехпозиционной частотной манипуляции генератор перемещает выходную частоту модулированного сигнала между тремя предустановленными частотами (частота сигнала несущей частоты и двумя частотами скачков) в соответствии с логическим уровнем модулирующего сигнала или частоты скачка. Режимы манипуляции для каждого канала независимы, могут устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипул<u>яц</u>ии 3FSK

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **ЗFSK**, чтобы включить 3FSK - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при 3FSK: синусоидальная, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции 3FSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-манипуляции.

Настройки частоты скачков манипуляции

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **HopFreq1** и **HopFreq2**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции 3FSK. Диапазон частоты скачков зависит от формы сигнала несущей частоты. См. <u>Таблица 9.1.1.</u> АМ-манипуляции.

Настройки частоты модулирующего сигнала

Если источник манипуляции внутренний, можно выбрать частоту сдвига между частотой сигнала несущей частоты и частотой скачка. Включите режим манипуляции **ЗFSK**, чтобы установить частоту, диапазон составляет от 1 мкГц до 2 МГц, по умолчанию 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции.

Подробный пример

Заданные параметры сигнала следующие: режим манипуляции 3FSK, сигнал несущей частоты – внутренняя синусоида частота 2 кГц, амплитуда 1 Впп,

частота скачка 1 1 кГц, частота скачка 2 5 кГц, частота смещения в пределах 100 Гц. Шаги настройки следующие:

1) Включите режим манипуляции 3FSK: нажмите **СН1**→далее вкладки **Мodulate**→**3FSK** соответственно.

2) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

	?								¥ 🞝
	CH1		CH2	CF	I3	CH4		Util	ity
	Continue		Modulate 3F8K	Swee	.b	Burst		Cha	annel
	Base Type	Square	Ramp Pulse	~~~ _{Arb}				Out	OFF
F	Freq	1.000,00	0,000 kHz					INV	OFF
4	Ampl	100.0 m	/pp	$- \land \land$				Load	HighZ
1	Offset	0.0 mV OFF						Copy	H1←CH2
						VVVVVVV			
1 "			2 HighZ		3 HighZ		4 Highz		

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl** чтобы открыть визуальную клавиатуру и ввести 1 Впп.

3) Установите частоту скачков и частоту манипуляции

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс манипуляции и задать частоту манипуляции 3FSK.

?				\$ <u>5</u>
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate 3FSK	Sweep	Burst	Channel
Base Type AM	₩~₩₩ ; ; ₩₩₩ x8-am qam ask			Out OFF
ModFreq 100.	000,000 Hz			INV OFF
HopFreq1 100.	000,000,0 kHz			Load HighZ
HopFreq2 50.0	00,000,00 kHz			Copy CH1-CH2
1 Highz 3	FSK 2 HighZ	Continue 3 HighZ	Continue 4 Hig	

Нажмите **HopFreq1**, чтобы открыть визуальную клавиатуру и ввести частоту скачка 1 1 кГ<u>ц.</u>

Нажмите **HopFreq2**, чтобы открыть визуальную клавиатуру и ввести частоту скачка 2 5 кГц.

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала манипуляции 3FSK, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.8.

10.1.94FSK Четырехпозиционная частотная манипуляция)

В режиме 4FSK четырехпозиционной частотной манипуляции генератор перемещает выходную частоту модулированного сигнала между четырьмя предустановленными частотами (частота сигнала несущей частоты и тремя частотами скачков), в соответствии с логическим уровнем модулирующего сигнала для вывода несущей частоты или частоты скачка.

Режимы модуляции для каждого канала независимы, возможно устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипуляции 4FSK

Нажмите кнопку **CH1** → далее вкладки **Modulate** → **4FSK**, чтобы включить 4FSK - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при 4FSK: синусоидальная, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции 4FSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-манипуляции.

Настройки частоты скачков манипуляции

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **HopFreq1** и **HopFreq2**, **HopFreq3** чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции 4FSK. Диапазон частоты скачков зависит от формы сигнала несущей частоты. См.<u>Таблица 9.1.1.</u> АМ-манипуляции.

Настройки частоты модулирующего сигнала

Если источник модуляции выбран внутренний, можно выбрать частоту сдвига между частотой сигнала несущей частоты и частотой скачка. Включите режим модуляции **4FSK**, чтобы установить частоту в диапазоне от 1 мкГц до 2 МГц, по умолчанию 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции.

Подробный пример

Заданные параметры сигнала следующие: режим манипуляции 4FSK , сигнал несущей частоты – внутренняя синусоида частота 500 Гц, амплитуда 1 В

пп,

частота скачка 1 2 кГц, частота скачка 2 5 кГц, частота скачка 3 10 кГц, частота смещения в пределах 100 Гц. Шаги настройки следующие:

1) Включите режим модуляции 4FSK: нажмите **СН1**→ далее вкладки **Modulate**→**4FSK** соответственно.

2) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

?				Ý 🕞
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate 4FSK	Sweep	Burst	Channel
Base Type	Square Ramp Pulse	Arb		Out OFF
Freq 1.00	00,000,000 kHz			INV OFF
Ampl 100.	.0 mVpp			Lood High7
Offset 0.0 r	mV			
NoiseSum OFF				Сору СН1←СН2
		<u> </u>	A <u>n A n A n</u> r A n A n	
1 HighZ 4	FSK 2 HighZ	Continue 3 HighZ	Continue 4 Hi	

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 500Гц. Нажмите **Ampl** чтобы открыть визуальную клавиатуру и ввести 1В пп.

1) Установите частоту скачков и частоту манипуляции

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс манипуляции и задать частоту манипуляции 4FSK.

\sim	?				\$ [
	CH1	CH2	CH3	CH4	Utility
	Continue	Modulate 4FSK	Sweep	Burst	Channel
	Base Type AM	∭~{}÷ /\//// dsb-am qam ask			Out OFF
	ModFreq 100.	.000,000 Hz			INV OFF
	HopFreq1 100.	.000,000,0 kHz			Load HighZ
	HopFreq2 50.0	000,000,00 kHz			
	HopFreq3 25.0	000,000,00 kHz			Сору СН1←СН2
1		FSK 2 HighZ	\sim 3 HighZ	Continue 4 Hig	

Нажмите **HopFreq1**, чтобы открыть визуальную клавиатуру и ввести частоту скачка 1 2 кГц. Нажмите **HopFreq2**, чтобы открыть визуальную клавиатуру и ввести частоту скачка 1 5 кГц. Нажмите **HopFreq3**, чтобы открыть визуальную клавиатуру и ввести частоту скачка 1 10 кГц.

3) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала модуляции 4FSK, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.9

10.1.10 ВРЅК двоичная фазовая манипуляция

В режиме BPSK двоичной фазовой манипуляции генератор перемещает выходную фазу модулированного сигнала между предустановленной фазой несущей и фазой манипуляции, в соответствии с логическим уровнем двоичных последовательностей модулирующего сигнала 0 и 1.

Режимы модуляции для каждого канала независимы, возможно устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипул<u>яци</u>и BPSK

Нажмите кнопку **CH1** → далее вкладки **Modulate** → **BPSK**, чтобы включить BPSK -манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

?				\$ D
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate BPSK	Sweep	Burst	Channel
Base M ÷ ÷ ÷ Type GAM				Out OFF
Bitrate 100.	000,000 bps			INV OFF
PN Code PN3		ΛΛΛΛ		
Phase1 0.00	٥			Load
Phase2 90.0	0 °			Сору СН1←СН2
		V V V V	V <u>VVVV</u>	
1 HighZ BP	2 HighZ	Continue 3 HighZ	Continue 4 High	

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при BPSK: синусоидальная, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции BPSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки сигнала несущей частоты АМ-модуляции.

Настройки PN-кода

Генератор сигналов в режиме BPSK двоичной фазовой манипуляции может выбрать только внутренний источник последовательностей.

Включите режим модуляции **BPSK**, **PN Code** по умолчанию установлен – код **PN3.** Для смены кода используйте многофункциональную ручку или нажмите необходимый код PN для выбора.

?						\$ t
CH1	CH2	CF	13		CH4	Utility
Continue	Modulate BPSK	Swee	ep		Burst	Channel
Base Mr +++ Type I GAM		/ \\/ зғsк		WW////		Out OFF
Bitrate 100.	.000,000 bps	PN3	PN13	PN25		INV OFF
PN Code PN3	;	PN5	PN15	PN27	$\Lambda \Lambda \Lambda I$	
Phase1 0.00	°	PN7	PN17	PN29		Load HighZ
Phase2 90.0	0°	PN9	PN21	PN31		Сору СН1←СН2
		DN44	DAI22	DN22	<u>v v v v</u>	
		PNTT	PNZ3	PN33	J	
1 HighZ	PSK 2 HighZ		3 Highz		Continue 4 Hig	

Настройки частоты следования символов модулирующей цифровой последовательности BPSK манипуляции

В режиме манипуляции BPSK можно установить частоту сдвига между несущей фазой и модулирующей фазой.

Диапазон частоты следования символов модулирующей цифровой последовательности (битрейта) BPSK устанавливается в диапазоне на 1 мкбит/с~2 Мбит/с, по умолчанию составляет 100 бит/с.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Bitrate**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции BPSK.

Настройки фазы

1) **Phase1** — это фаза сигнала несущей частоты, значение по умолчанию — 0°. Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Phase1** ? чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции.

2) **Phase 2** — это фаза модулирующего сигнала, то есть фазовые изменения между BPSK-модулированной волной и фазой сигнала несущей частоты. Диапазон фазы модулирующего сигнала BPSK может быть установлен в диапазоне 0°~360°, шаги настройки такие же, как у **Phase1.**

Подробный пример

Заданные параметры сигнала следующие:

режим манипуляции BPSK,

сигнал несущей частоты – внутренняя синусоида частота 2 кГц, амплитуда 2 В пп,

начальная фаза 90°,

частота сдвига 1 кбит/с между фазой сигнала несущей частоты и фазой модулирующего сигнала,

код последовательности PN Code PN15.

Шаги настройки следующие:

1) Включите режим модуляции BPSK: нажмите **СН1**→ далее вкладки **Мodulate**→**BPSK** соответственно.

	?				Ý 🗗
	CH1	CH2	СНЗ	CH4	Utility
	Continue	Modulate BPSK	Sweep	Burst	Channel
	Base Mr +++ Type CAM				Out OFF
	Bitrate 100	.000,000 bps			INV OFF
	PN Code PN3	3	ΛΛΛΛΛ		
	Phase1 0.00) °			Load
	Phase2 90.0	00 °			Сору СН1←СН2
			VVVV		
1	HighZ B	SPSK 2 HighZ	Continue 3 HighZ	Continue 4 High	hZ Continue

4) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

Нажмите **Freq** «Частота», чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 2Vpp.

?				\$ 4
СН1	CH2	СНЗ	CH4	Utility
Continue	Modulate BPSK	Sweep	Burst	Channel
Base Type	Square Ramp Arb			Out OFF
Freq 2.0	000,000,000 kHz			INV OFF
Ampl 2.0	00,0 Vpp		111111111111111111111111111111111111111	
Offset 0.0) mV	<u>AAAAAAAA</u>		Load HighZ
NoiseSum OF	F			Сору СН1←СН2
1 HighZ	BPSK 2 HighZ	Continue 3 HighZ	Continue 4 Hi	ghZ Continue

5) Установите битрейт и фазу BPSK

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс манипуляции и задать скорость и фазу BPSK.

Нажмите **Bitrate**, чтобы открыть всплывающую цифровую клавиатуру и ввести 1 кбит/с.

Фаза использует значение по умолчанию, фаза1: 0°, выставите фаза2 : 90°. Нажмите **PN code** для выбора из набора кодов , чтобы выбрать **PN15**.

?				\$ Ē
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate BPSK	Sweep	Burst	Channel
Вазе Туре И QAM				Out OFF
Bitrate 1.00	0,000,000 kbps			
PN Code PN1	5		111111111111111111111111111111111111111	
Phase1 0.00	•			Load HighZ
Phase2 90.0	0 °			Сору СН1←СН2
			,	
1 HighZ	PSK 2 HighZ	Continue 3 HighZ	Continue 4 Hi	

2) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала манипуляции BPSK, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.10.

10.1.11 QPSK квадратурная фазовая манипуляция

В режиме QPSK квадратурной фазовой манипуляции генератор перемещает выходную фазу модулированного сигнала между четырьмя предустановленными фазами (фаза сигнала несущей частоты и тремя модулирующими фазами, в соответствии с логическим уровнем двоичных последовательностей модулирующего сигнала 0 и 1.

Режимы модуляции для каждого канала независимы, возможно устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипуляции QPSK

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **QPSK**, чтобы включить QPSK -манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при QPSK: синусоидальная, прямоугольная, пилообразная, импульсная и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции QPSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты несущей сигнала АМ-манипуляции.

Настройки PN-источника модулирующего сигнала

Генератор сигналов в режиме BPSK двоичной фазовой манипуляции может выбрать только внутренний источник последовательностей

Пользователю доступен выбор генерируемой псевдо-шумовой двоичной последовательности различной длины (3,5,7, 9, 11 символов и др.) Длина псевдошумовой последовательности отражена в названии соответствующего источника (PN3, PN5, PN7, PN9, PN11 и т.д.)..

(PN3, PN5, PN7, PN9, PN11 и т.д.).. Включите режим модуляции **QPSK**, **PN Code** по умолчанию установлен – код **PN3.** Для смены кода используйте многофункциональную ручку или нажмите необходимый код PN для выбора.

Настройки скорости QPSK манипуляции

В режиме манипуляции BPSK можно установить частоту сдвига между несущей фазой и модулирующей фазой.

Диапазон скорости (битрейта) BPSK устанавливается в диапазоне на 1 мкбит/с~2 Мбит/с, по умолчанию составляет 100 бит/с.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Bitrate**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции BPSK.

Настройки фазы

1) **Phase1** - это фаза сигнала несущей частоты, значение по умолчанию — 0°.

2) **Phase 2,3,4 – это фазы** модулирующего сигнала, то есть фазовые изменения между фазой модулированного сигнала QPSK и фазой сигнала несущей частоты. Диапазон фазы модулирующего сигнала QPSK может быть установлен в диапазоне от 0° до 360°.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Phase1**, **Phase2**, **Phase3**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции.

Подробный пример

Заданные параметры сигнала следующие:

режим манипуляции QPSK ,

сигнал несущей частоты – внутренняя синусоида частота 2 кГц, амплитуда 2 В пп,

начальная фаза 0°,

Phase 2 -90°

Phase 3 180°

Phase 4 270°

частота сдвига 1 кбит/с между фазой сигнала несущей частоты и фазой модулирующего сигнала,

псевдо-шумовая последовательность длиной PN15.

Шаги настройки следующие:

3) Включите режим манипуляции QPSK: нажмите **СН1**→ далее вкладки **Modulate**→**QPSK** соответственно.

4) Установите параметр сигнала несущей частоты
Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

Нажмите **Freq** «Частота», чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 2Vpp.

5) Установите битрейт и фазу QPSK

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс манипуляции и задать скорость и фазу QPSK.

ŝ	?				\$ ₽
	CH1	CH2	СНЗ	CH4	Utility
	Continue	Modulate QPSK	Sweep	Burst	Channel
	Base MMM Type ASK				Out OFF
	Bitrate 100.	.000,000 bps			INV OFF
	PN Code PN3				Load High7
	Phase1 0.00) °			
	Phase2 90.0	00 °			Сору СН1←СН2
	Phase3 180.	.00 °	<u> </u>	0 <u>0 4 0 4 0 1</u> 4 0 4 0 1	
	Phase4 270.	.00 °			
1		PSK 2 HighZ	Continue 3 HighZ	Continue 4 Hi	

Нажмите **Bitrate**, чтобы открыть всплывающую цифровую клавиатуру и ввести 1 кбит/с.

Фаза использует значение по умолчанию, фаза1: 0°, ввести фаза2 : 90°, фаза3:180°, фаза 4:270°.

Нажмите **PN code** для выбора из набора кодов, чтобы выбрать PN15.

6) Включите <u>выход</u>ной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

ŝ	?				Ý 🗗
	CH1	CH2	СНЗ	CH4	Utility
	Continue	Modulate QPSK	Sweep	Burst	Channel
	Base M// Type ASK				Out ON
	Bitrate 1	.000,000,000 kbps			
	PN Code P	N15			
	Phase1 0	0.00 °			Load HighZ
	Phase2 9	0.00 °			Сору СН1-СН2
	Phase3 1	80.00 °	<u> </u>	4 4 <u>6 4 6 7 4 6 </u> 4 6 9 6 6	
	Phase4 2	270.00 °			
1	HighZ	OPSK 2 HighZ	Continue 3 HighZ	Continue 4 H	

Форма сигнала манипуляции BPSK, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 1.11.1

10.1.12 OSK осцилляционная манипуляция

В режиме OSK осцилляционной манипуляция выходной сигнал генератора представляет собой прерывистый по амплитуде гармонический сигнал. Несущая волна выводится, когда внутренний кварцевый генератор начинает колебания; вывод останавливается, когда внутренний кварцевый генератор прекращает колебания.

В момент, когда внутренний опорный кварцевый генератор начинает генерировать колебание, на выход прибора начинает подаваться гармонический сигнал несущей частоты, когда колебание внутреннего опорного кварцевого генератора заканчивается, выходной модулированный сигнал представляет собой нулевое постоянное напряжение. Включение/отключение внутреннего опорного генератора управляется высоким и низким уровнями модулирующего сигнала.

Режимы манипуляции для каждого канала независимы, возможно установить одинаковые или разные режимы манипуляции для каждого канала.

Выбор манипул<u>яци</u>и OSK

Нажмите кнопку **CH1** → далее вкладки **Modulate** → **OSK**, чтобы включить OSK - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при OSK: синусоидальная, по умолчанию используется синусоида.

После выбора манипуляции OSK нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты сигнала несущей частоты АМ-модуляции.

Выбор источника манипуляции

Генератор сигналов может выбирать внутренний или внешний источник манипуляции. При включении манипуляции OSK источником манипуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **TrigSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки манипуляции OSK.

1) Выбор внутреннего источника запуска манипуляции

Когда источник манипуляции выбран внутренний, форма модулирующего сигнала представляет собой синусоидальную волну. Используйте частоту следования модулирующих импульсов OSK для того, чтобы настроить продолжительность включенного и отключенного состояния опорного генератора и соответственно управления фазовым соотношением начала и окончания колебаний.

2) Выбор внешнего источника запуска манипуляции

Если источник манипуляции выбран внешний, форма и частота будут скрыты в списке параметров. Используйте внешний сигнал для манипуляции несущего сигнала. Выход фазы OSK управляется логическим уровнем на разъеме внешнего сигнала цифровой манипуляции (разъем **FSK Trig**) на задней панели.

Например, при подаче низкого логического уровня информационного сигнала выходной сигнал генератора будет представлять гармонический сигнал несущей частоты, а при подаче высокого логического уровня – генерация сигнала прекращается (Нулевое постоянное напряжение).

Настройки периода колебаний

Период колебаний — это период колебаний внутреннего опорного кварцевого генератора. Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **OscTime**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции. Диапазон составляет от 1 мкГц до 2 МГц, по умолчанию 2 мс.

Настройки частоты следования прямоугольных импульсов OSK

Режим манипуляции OSK представляет изменения между фазой модулированного сигнала и фазой сигнала несущей частоты внутреннего источника манипуляции. Частота может быть установлена в диапазоне от 1 мкГц до 2 МГц, частота по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModRate**, чтобы вывести на экран визуальную цифровую

клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки манипуляции.

Подробный пример

Заданные параметры сигнала следующие:

режим манипуляции OSK,

сигнал несущей частоты - синусоидальная волна с частотой 2 кГц, амплитудой 2 Впик-пик в

установите частоту следования прямоугольных импульсов OSK,100 Гц, период колебаний 1 мкс.

Шаги настройки следующие:

1) Включите режим модуляции OSK: для этого последовательно нажмите **СН1**→ далее вкладки **Modulate**→**OSK** соответственно.

Примечание: так как манипуляция OSK находится на второй странице доступных типов модуляции, нажмите кнопку **Туре** дважды

2) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

?				4 🗗
CH1	CH2	CH3	CH4	Utility
Continue	Modulate ^{OSK}	Sweep	Burst	Channel
Base Type				Out OFF
Freq 1.00	0,000,000 kHz			INV OFF
Ampl 100.	.0 mVpp			
Offset 0.0	mV		$ \rangle$	Load Highz
Phase 0.00	0°			Сору СН1←СН2
NoiseSum OFF)		
1 Ніава	Ssk 2 HighZ	Continue 3 HighZ	Gontinue 4	

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 2Vpp.

4) Установите параметры манипуляции

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться в интерфейс манипуляции и задать частоту следования прямоугольных импульсов OSK и период колебаний

?				\$ G
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate OSK	Sweep	Burst	Channel
Base Type				Out OFF
TrigSrc Inter	rnal			INV OFF
ModRate 100. OscTime 2.00	000,000 Hz 0,000 ms			Load HighZ
				Сору СН1←СН2
1 HighZ	Ask 2 HighZ	Continue 3 HighZ	Gontinue 4 H	ighZ

Нажмите **ModRate**, чтобы открыть визуальную клавиатуру и ввести частоту следования прямоугольных импульсов ОSK 100 Гц (по умолчанию 100 Гц).

Нажмите **OscTime**, чтобы открыть визуальную клавиатуру и ввести период колебаний 1мкс.

5) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

?				\$ G
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate _{OSK}	Sweep	Burst	Channel
Base Type			BPSK OPSK OSK	Out ON
TrigSrc Inter	rnal			INV OFF
ModRate 100.	000,000 Hz		A A A A A A A A	Land Useb7
OscTime 1.00	0 µs			
				Сору СН1←СН2
		1.101		
HighZ 0	sk 2 HighZ	Continue 3 HighZ	Gontinue 4 Hi	

Форма сигнала манипуляции OSK, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.12

10.1.13 SUM Суммирующая модуляция

Суммирующая модуляция состоит из несущего сигнала и модулированного сигнала. Выходной сигнал представляет собой сумму амплитуды сигнала несущей частоты , умноженной на коэффициент модуляции, и суммы амплитуду модулированного сигнала, умноженную на коэффициент модуляции.

Режимы модуляции для каждого канала независимы, возможно установить одинаковые или разные режимы модуляции для каждого канала.

Выбор модуляции SUM

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **SUM** чтобы включить SUM - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при SUM: синусоидальная, прямоугольная, пилообразная, импульсная, гармоническая, шум и произвольная волна (кроме постоянного тока), по умолчанию используется синусоида.

После выбора манипуляции SUM нажмите **Вазе**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты несущего сигнала АМ-манипуляции.

Выбор источника манипуляции

Генератор сигналов может выбирать внутренний или внешний источник манипуляции. При включении манипуляции SUM источником манипуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки **ModSrc**, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки манипуляции SUM.

1) Выбор внутреннего источника модуляции

Когда источник модуляции выбран внутренний, форма модулирующего сигнала может быть выбрана из следующих :

Прямоугольная волна: коэффициент заполнения 50%

- Поднимающаяся волна рампы: симметрия 100%
- Падающая волна: симметрия 0%

Произвольная волна: длина произвольного сигнала ограничена 2 кбит/с методом выбора точки автоматически

🛛 Шумовая волна: белый гауссовский шум

2) Выбор внешнего источника модуляции.

Если выбран внешний источник модуляции, то форма модулирующего сигнала и частота будут недоступны для редактирования в списке параметров. Используйте параметры внешнего модулирующего сигнала для модуляции сигнала несущей частоты.

Глубина модуляции SUM управляется уровнем сигнала ±5 В на входном разъеме **Modulation In** внешней аналоговой модуляции на задней панели прибора.

Например, если установить глубину модуляции на 100 %, выходная амплитуда SUM будет максимальной, когда внешний сигнал модуляции равен +5 В; и выходная амплитуда амплитуды SUM будет минимальной, когда внешний сигнал модуляции равен -5 В.

Настройки частоты модулирующего сигнала

Когда источник модуляции выбран внутренний, он может установить частоту модулирующего сигнала в диапазоне частот от 1 мкГц до 2 МГц, диапазон по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции SUM.

Когда источник модуляции выбран внешний, форма модулирующего сигнала и частота недоступны для редактирования в списке параметров. Используйте параметры внешнего модулирующего сигнала для модуляции сигнала несущей частоты. Диапазон частот входного внешнего модулирующего сигнала составляет от 0 Гц до 50 кГц.

Настройки глубины модуляции

Глубина модуляции указывает на изменение амплитуды, выражается в %. Диапазон глубины модуляции SUM может быть установлен в диапазоне от 0% до 100%, диапазон по умолчанию составляет 100%. Если глубина модуляции составляет 0%, то выходная амплитуда равна амплитуде сигнала несущей частоты .Если глубина модуляции составляет 100%, то выходная амплитуда равна амплитуде модулированного сигнала

Поверните многофункциональную ручку и клавишу направления или нажмите вкладку **ModDepth**, чтобы открыть визуальную цифровую клавиатуру для ввода значений.

Когда источник модуляции внешний, выходная амплитуда управляется уровнем сигнала ±5 В на входном разъеме **Modulation In** внешней аналоговой модуляции на задней панели прибора

Подробный пример

Заданные параметры сигнала следующие:

режим модуляции SUM,

модулирующий сигнал -внутренняя синусоидальная волна частота 1 кГц,

сигнал несущей частоты- внутренний прямоугольный сигнал с частотой 2 кГц, амплитудой 200 мВпик-пик, коэффициент заполнения 45%

глубина модуляции 80%

Шаги настройки следующие:

1) Включите режим модуляции SUM: для этого нажмите последовательно вкладки **CH1**→ далее **Modulate**→**SUM** соответственно.

2) Установите параметр сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

?	4			\$ G
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate sum	Sweep	Burst	Channel
Base Type Sine S	iquare Ramp Pulse	Arb Harmonic Noi	₩ 80	Out OFF
Freq 1.00	0,000,000 kHz			INV OFF
Ampl 100.	0 mVpp			Land High 7
Offset 0.0 r	nV		/	7
Phase 0.00	0 °		\setminus /	Сору СН1←СН2
Duty 50.0	00,000 %		\backslash	
NoiseSum OFF				
1 HighZ	SUM 2 HighZ	Continue 3 HighZ	Continue 4	

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 2 Впп. Нажмите **Duty**, чтобы открыть визуальную клавиатуру и ввести 45%.

3) Установите параметры модулирующего сигнала

После настройки параметров несущего сигнала нажмите Туре, чтобы вернуться в интерфейс модуляции SUM и настроить параметры.

Нажмите вкладку **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единиц измерения 1 кГц.

Нажмите вкладку **ModDepth**, чтобы открыть визуальную цифровую клавиатуру для ввода для ввода значений и выбора единиц измерения 80%.

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала SUM-модуляции, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.13.

10.1.14 QAM квадратурная амплитудная модуляция

В режиме квадратурной амплитудной модуляции в качестве сигнала несущей частоты используются два сигнала одинаковой частоты, но с разницей фаз 90° (обычно обозначаемые как Sin и Cos), которые подвергаются амплитудной модуляции полезным сигналом основной полосы частот.

Генератор может выводить семь типов квадратурной амплитудной модуляции: QAM4, QAM8, QAM16, QAM32, QAM64, QAM128 и QAM256M.

Режимы модуляции для каждого канала независимы, возможно устанавливать одинаковые или разные режимы модуляции для каждого канала.

Примечание: рекомендуется использовать опорный выходной сигнал 10 МГц данного прибора в качестве входного опорного тактового сигнала прибора демодуляции или подавать опорный тактовый сигнал прибора демодуляции в качестве тактового сигнала. Эта синхронизации тактового сигнала позволяет точно осуществлять демодуляцию сигнала и устранить отклонение фазы.

Выбор модуляции QAM

Нажмите кнопку **CH1** → далее вкладки **Modulate** → **QAM** чтобы включить SUM - манипуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Сигнал несущей частоты при модуляции QAM представляет собой только синусоидальную волну. После выбора модуляции QAM нажмите **Base**, чтобы отобразить форму сигнала несущей частоты с правой стороны.

?				4 🗗
CH1	CH2	СНЗ	CH4	Utility
Continue	e Modulate	Sweep	Burst	Channel
Base Type	× 1			Out OFF
Freq	1.000,000,000 kHz		Ţ Q	INV OFF
Ampl	100.0 mVpp	_ ·	•	Load HighZ
Phase	0.000 °		"i	Сору СН1-СН2
NoiseSum	OFF		•	
1 HighZ	∼ 2 HighZ	Eontinue 3 High	z Continue 4	

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты несущего сигнала АМ-модуляции.

Тип модуляции

Тип модуляции, который определяется порядком квадратурной амплитудной модуляции QAM, определяет количество возможных различных состояний модулированного сигнала, отличающихся друг от друга фазой или амплитудой. Модуляции различных порядков описываются соответствующими сигнальными созвездиями.

Для выбора порядка квадратурной амплитудной модуляции поверните многофункциональную ручку или нажмите **IQMap**→ далее **QAM4**, чтобы перейти к QAM4, QAM8, QAM16, QAM32, QAM64, QAM128 и QAM256M.

Выбор кода PN источника модулирующего сигнала

Пользователю доступен выбор генерируемой псевдо-шумовой двоичной последовательности различной длины (3,5,7, 9, 11 символов и др.) Длина псевдошумовой последовательности отражена в названии соответствующего источника (PN3, PN5, PN7, PN9, PN11 и т.д.).

При включении режим модуляции QAM по умолчанию выбран источник PN3. Поверните многофункциональную ручку или нажмите PN Code→PN3, чтобы пройти через PN3 к PN5, PN7, PN9, PN11, PN13, PN15, PN17, PN21, PN23, PN25, PN27, PN29, PN31 и PN33.

Настройка частоты следования символов модулирующей цифровой последовательности QAM

В режиме модуляции QAM можно установить частоту сдвига между несущей фазой и модулирующей фазой. Диапазон частоты следования символов модулирующей цифровой

последовательности QAM установлен на 1 мкбит/с ~ 2 Мбит/с, диапазон по умолчанию составляет 100 бит/с.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Bitrate**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции.

Подробный пример

Заданные параметры сигнала следующие:

режим модуляции QAM,

сигнал несущей частоты- внутренняя синусоидальная волна частота 2 кГц, амплитуда 2 В пик-пик,

частоты следования символов модулирующей цифровой последовательности QAM 100 бит/с,

тип модуляции QAM64,

псевдо-шумовая последовательность длиной PN7, Шаги настройки следующие:

1) Включите режим модуляции QAM, для этого нажмите последовательно вкладки **CH1**→ далее **Modulate**→**QAM** соответственно.

Примечание: так как модуляция QAM находится на второй странице доступных типов модуляции, нажмите кнопку **Туре** дважды

CH1		CH2	CH3	CH4	v Utility
Continu	ue	Modulate _{QAN}	Sweep	Burst	Channel
Base ~//	M~ ₩₩~₩₩ am dsb-am	CAM ASK			Out OFF
IQMap	QAM4		T T		INV OFF
PN Code Bitrate	PN3 100.000,0	000 bps	·	•	Load HighZ
					Сору СН1←СН2

Установите параметры сигнала несущей частоты Нажмите **Вазе**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

?				\$ 4
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate QAM	Sweep	Burst	Channel
Base Type				Out OFF
Freq 1.000	,000,000 kHz		ŤQ	
Ampl 100.0	mVpp	· ·	•	Load High7
Offset 0.0 m	V		"ī	
Phase 0.000	0	-		Сору СН1←СН2
NoiseSum OFF				
1 HighZ	N 2 HighZ	Continue 3 HighZ	Continue 4	

Нажмите **Freq**, чтобы открыть визуальную клавиатуру и ввести 2 кГц. Нажмите **Ampl**, чтобы открыть визуальную клавиатуру и ввести 2 Впп

CH1 Continue	CH2 Modulate	СНЗ	CH4	Utility
Continue	Modulate			
	QAM	Sweep	Burst	Channel
Type Sine				Out OFF
Freq 2.000,0	000,000 kHz	† º		INV OFF
Ampl 2.000,0) Vpp			
Offset 0.0 mV	l			Load
Phase 0.000 °	í.			Сору СН1←СН2
NoiseSum OFF		·		

3) Установите параметры модулирующего сигнала

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться на уровень меню выше в интерфейс модуляции QAM и настроить параметры.

CH1 Continue			СН2	2		СНЗ		CH4		Ut	ility
		Modulate		Sweep		Burst	Channel				
Base Type	~///~	-√\\/~^{\ \/ dsb-am	÷÷ Qam	MM/V/V ASK						Out	OFF
IQMa	ip Q	AM4			1		Ť			INV	OFF
PN Co Bitrat	ode Pl te 10	N3 00.000,00	00 bps				•	•		Load	High2
											CU14 CU

Нажмите **IQMap**→**QAM4**, чтобы выбрать QAM64. Обратите внимание, как при этом изменилось сигнальное созвездие на экране прибора Нажмите **PN Code**→**PN3**, чтобы выбрать PN7.

Нажмите **Bitrate**, визуальную цифровую клавиатуру для ввода значений и выбора единиц измерения, чтобы ввести 100 бит/с (по умолчанию 100 бит/с)

СН1	CH2	CH3	CH4	Utility
Continue	Modulate QAM	Sweep	Burst	Channel
Base Type AM D	Малійна : : ММллл sb-ам			Out OFF
IQMap QAN	164		. T	INV OFF
PN Code PN7 Bitrate 100.	000,000 bps	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	Load HighZ
			+ + + + + + + + + + + + + + + + +	Сору СН1-СН2

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

СН1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep	Burst	Channel
Base ~///~ // Type AM C	₩~₩ dsb-am дам ask			Out ON
IQMap QAM	M64		1º	INV OFF
PN Code PN7 Bitrate 100.	7 .000,000 bps		· · · · · · · · · · · · · · · · · · ·	Load HighZ
		2 1404		Сору СН1⊢СН
		1.100		

Форма сигнала модуляции QAM, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.14

10.1.15 РWМ широтно-импульсная модуляция

В режиме широтно-импульсной модуляции модулированная форма волны определяется параметрами сигнала несущей частоты и модулирующего сигнала. Ширина (длина) импульсов сигнала несущей частоты изменяется в зависимости от амплитуды модулирующего сигнала.

Режимы модуляции для каждого канала независимы, возможно устанавливать одинаковые или разные режимы манипуляции для каждого канала.

Выбор ШИМ-модуляции

Нажмите кнопку **СН1** → далее вкладки **Modulate** → **РWM**, чтобы включить PWM модуляцию, прибор выводит модулированный сигнал в соответствии с текущей настройкой модулирующего сигнала и сигнала несущей частоты.

Выбор формы сигнала несущей частоты

Несущая волна ШИМ может быть только импульсной. После выбора РWМмодуляции нажмите **Вазе** для представления формы несущего сигнала с правой стороны.

Настройки частоты сигнала несущей частоты

См. раздел Настройки частоты несущего сигнала АМ-модуляции.

Настройки источника модулирующего сигнала

Генератор сигналов может выбирать внутренний или внешний источник модуляции. При включении модуляции РWM источником модуляции по умолчанию является внутренний. Поверните многофункциональную ручку или коснитесь вкладки ModSrc, чтобы перейти к внутреннему или внешнему источнику модуляции в интерфейсе настройки модуляции РШМ.

1) Выбор внутреннего источника запуска модуляции

Если выбран внутренний источник модуляции, форма модулирующего сигнала может быть синусоидальной, прямоугольной (квадратной), восходящей пилообразной, нисходящей пилообразной , произвольной и шумовой волной. По умолчанию используется синусоидальная волна.

При включении модуляции РШМ **МоdWave** представляет синус, вращайте многофункциональную ручку или нажмите слово **Sine**, чтобы выбрать синусоидальную форму волны в интерфейсе настройки модуляции.

Далее форма модулирующего сигнала может быть выбрана из следующих :

Прямоугольная волна: коэффициент заполнения 50%

Восходящая пилообразная : симметрия 100%

□ Нисходящая пилообразная симметрия 0%

П Произвольная волна: длина произвольного сигнала ограничена 4 кбит/с методом выбора точки автоматически

Шумовая волна: белый гауссовский шум

7. Выбор внешнего источника модуляции.

Если выбран внешний источник модуляции, то форма модулирующего сигнала и частота будут недоступны для редактирования в списке параметров. Используйте параметры внешнего модулирующего сигнала для модуляции несущего сигнала.

Отклонение коэффициента заполнения ШИМ управляется уровнем сигнала ±5 В на входном разъеме **Modulation In** внешней аналоговой модуляции на задней панели прибора.

Например, если установить отклонение коэффициента заполнения на 15 %, когда внешний модулированный сигнал составляет +5 В, коэффициент заполнения несущего сигнала (импульсного сигнала) увеличится на 15 %, чем ниже уровень внешнего сигнала, тем меньше отклонение.

Настройки частоты модулирующего сигнала

Когда источник модуляции выбран внутренний, он может установить частоту модулирующего сигнала в диапазоне частот от 1 мкГц до 2 МГц, диапазон по умолчанию составляет 100 Гц.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **ModFreq**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки модуляции PWM.

Когда источник модуляции внешний, то форма модулирующего сигнала и частота недоступны для редактирования в списке параметров. Используйте параметры внешнего модулирующего сигнала для модуляции сигнала несущей частоты. Диапазон частот входного внешнего модулирующего сигнала составляет от 0 Гц до 50 кГц.

Настройки отклонения коэффициента заполнения

Отклонение коэффициента заполнения - это отклонение модулированной формы сигнала в зависимости от коэффициента заполнения сигнала несущей частоты. Диапазон ШИМ может быть установлен на 0%~49,999825%, значение по умолчанию — 49,999825%.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки отклонения **DutyDev**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единиц измерения в интерфейсе настройки PWM-модуляции.

□ Отклонение коэффициента заполнения — это отклонение модулированного сигнала от коэффициента заполнения несущей тока (выраженное в %).

□ Отклонение коэффициента заполнения не может превышать коэффициента заполнения текущей импульсного сигнала.

□ Сумма отклонения коэффициента заполнения текущей импульсного сигнала должна быть ≤99,99%

П Минимальный коэффициент заполнения импульсного сигнала и время фронта тока будут влиять на настройки коэффициента заполнения.

Подробный пример

Заданные параметры сигнала следующие:

режим модуляции PWM,

модулирующий сигнал- внутренняя синусоидальная волну частотой 1 кГц

сигнал несущей частоты- импульсная волна с частотой 10 кГц, амплитудой 2 Впик-пик, с коэффициентом заполнения 50%, время нарастания/спада импульсов 100 нс

отклонение коэффициента заполнения частоты до 40% Шаги настройки следующие:

1) Включите режим модуляции РШМ, для этого нажмите последовательно вкладки **CH1**→**Modulate**→**PWM** соответственно.

2) Установите параметры сигнала несущей частоты

Нажмите **Base**, чтобы выбрать синус в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг не требует изменений.

Нажмите **Freq**, чтобы открыть визуальную цифровую клавиатуру и ввести 10 кГц.

Нажмите **Ampl**, чтобы открыть визуальную цифровую клавиатуру и ввести 2Vp.

Нажмите **REdge**, чтобы открыть визуальную цифровую клавиатуру для ввода времени нара<u>стания</u> переднего фронта импульса 100нс.

Нажмите **FEdge**, чтобы открыть визуальную цифровую клавиатуру для ввода времени спада заднего фронта импульса 100нс.

3) Установите параметры модулирующего сигнала

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться на уровень меню выше в интерфейс модуляции PWM и настроить параметры.

Нажмите **ModFreq**, чтобы открыть визуальную цифровую клавиатуру для ввода 1 кГц.

Нажмите **DutyDev**, чтобы открыть визуальную цифровую клавиатуру для ввода девиации коэффициента заполнения 40%.

4) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала РШМ-модуляции, наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.1.16

10.2 Форма выходного сигнала качающейся частоты

В режиме ГКЧ (генератор качания частоты) выходная частота генератора АКИП 3433 от начальной частоты до конечной частоты в режиме линейной, логарифмической, ступенчатой и списковой развертки в заданное время частотной модуляции.

Источник запуска может быть внутренним, внешним или ручным.

В режиме ГКЧ генератор может генерировать выходной сигнал синусоидальной, прямоугольной, пилообразной и произвольной (кроме постоянного тока) формы сигнала.

Режимы модуляции для каждого канала независимы, он может устанавливать одинаковые или разные режимы модуляции для каждого канала.

10.2.1 Включение режима ГКЧ

1) Для включения режима ГКЧ нажмите **СН1** и далее **Sweep**, прибор выведет модулированный сигнал в соответствии с текущей настройкой.

?				\$ \$
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep Line	Burst	Channel
Base Type Line	Log Step			Out OFF
TrigSrc Inter	rnal			
TrigOut Off Start 1.00	0,000,000 kHz			Load HighZ
Stop 1.00 Time 10.0	0,000,000 MHz 00,000 ms			Copy CH1←CH2
1 HighZ	Nighz Highz	Continue 3 HighZ	Continue 4	

2) Выберите форму сигнала несущей частоты ГКЧ

После выбора режима ГКЧ, нажмите **Вазе**, чтобы отобразить и выбрать форму сигнала несущей частоты с правой стороны.

10.2.2Настройки начальной и конечной частоты качания

Начальная и конечная частоты являются верхним и нижним границами качания частоты. Частота сигнала изменяется от начальной до конечной, а затем снова возвращается к начальной.

Поверните многофункциональную ручку или коснитесь вкладки **Start**, **Stop**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения в интерфейсе настройки:

□ Если начальная частота < конечной частоты, генератор сигналов выполняет качание от низкой частоты до высокой.

□ Если начальная частота > конечной частоты, генератор сигналов выполняет качание от высокой частоты к низкой.

□ Если начальная частота = конечная частота , генератор сигналов выдает постоянную частоту.

□ Синхросигнал запуска режима ГКЧ имеет низкий уровень от начала до середины времени ГКЧ и имеет высокий уровень от середины до конца времени ГКЧ.

По умолчанию начальная частота составляет 1 кГц, а конечная частота — 1 МГц, но диапазон начальной и конечной частоты может меняться в зависимости от формы сигнала несущей частоты

См. Таблицу 9.1.2 диапазона частот при настройке несущей частоты АМ.

10.2.3Настройка режима качания частоты

Генератор имеет четыре режима изменения частоты (закон качания): линейный, логарифмический, пошаговый и качание по списку.

□ Линейное качание частоты: выходная частота изменяется линейным образом,

□ Логарифмическое качание частоты: выходная частота изменяется в логарифмическом порядке,

 Шаговое качание частоты: выходная частота изменяется шаговым способом,

□ Качание по Списку: выходная частота изменяется согласно логического списка.

По умолчанию установлена линейная по умолчанию. Нажмите **Sweep**→ далее последовательно **Туре**, чтобы выбрать режим **Line, Log, Step и List**.

10.2.4 Настройка времени ГКЧ

Время ГКЧ по умолчанию от начала до остановки частоты составляет 1 с, а время ГКЧ может быть установлено в диапазоне от 1 мс до 500 с.

Поверните многофункциональную ручку, нажмите **Туре** → далее вкладку **Тіме**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения.

?				$\psi \in$
CH1	CH2	CH3	CH4	Utility
Continue	Modulate	Sweep	Burst	Channel
Base Type	Log Step			Out OFF
TrigSrc Inter	rnal			INV OFF
TrigOut Off Start 1.00	0,000,000 kHz			Load HighZ
Stop 1.00	0,000,000 MHz			Сору СН1-СН2
1 HighZ	ine 2 HighZ	Continue 3 HighZ	Continue 4	

10.2.5 Выбор источника запуска режима ГКЧ

Генератор сигнала включит режим ГКЧ и синтезирует выходной сигнал при получении сигнала запуска, а затем будет ждать следующего источника запуска.

Источник запуска режима ГКЧ может быть внутренним, внешним (внешний нарастающий/падающий фронт) или ручным.

Поверните многофункциональную ручку и клавишу направления или нажмите **TrigSrc**, чтобы перейти к вышеуказанным режимам : **Internal, External, ExREdge, ExFEdge и Manual**.

1) В случае внутреннего источника запуска Генератор выводит непрерывную последовательную частотную развертку. Скорость управляется установленным временем ГКЧ.

2) В случае внешнего источнике запуска. Генератор запустится с помощью внешнего цифрового модуляционного терминала (разъем **FSK Trig** на задней панели прибора). Генератор начнет режим ГКЧ при получении импульса TTL с заданной полярностью.

Примечание: В случае запуска от внешнего источника параметры выхода будут скрыты в списке параметров, поскольку выход запуска также выводится внешним цифровым модулем (разъем **FSK Trig**). Этот разъем не может быть использован в качестве входа внешнего запуска и выхода внутреннего запуска одновременно.

?				¥ 🗗
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep Line	Burst	Channel
Base Type	Log Step			Out OFF
TrigSrc ExtR	Edge			
Start 1.00 Stop 1.00	0,000,000 kHz 0,000,000 MHz			Load HighZ
Time 10.0	00,000 ms			Сору СН1-СН2
		~ ~ ~ ~ ~ ~		
1 HighZ	ine 2 HighZ	Continue 3 HighZ	Continue 4	

3) В случае использования ручного источника запуска нажмите **Trig Crd** и далее **Manua**I, чтобы вывести параметры ГКЧ для каждого значения времени, а в интерфейсе настройки текущего канала в правой части экрана появится уведомление.

10.2.6 Настройка выхода источника запуска режима ГКЧ

Если выбран источник запуска внутренний или ручной, то сигнал запуска прямоугольной формы может быть выведен через разъем **FSK Trig** внешний цифровой модуляции, совместимый с уровнем TTL. По умолчанию выход запуска **TrigOUT** находится в состоянии **OFF**, выключен.

Поверните многофункциональную ручку или нажмите вкладку **TrigOut**, чтобы перейти к следующему шагу – включению и выбору значений фронта внешнего сигнала запуска режима ГКЧ :**Close, REdge и DEdge**.

1) При внутреннем источнике запуска, Генератор выводит прямоугольный сигнал с коэффициентом заполнения 50% через внешний разъем внешний цифровой модуляции (разъем **FSK Trig**) при запуске ГКЧ. Период срабатывания зависит от заданного времени ГКЧ.

2) При ручном запуске Генератор выдает импульс длительностью более 1 мкс с разъема **FSK Trig** внешней цифровой модуляций .

3) При внешнем запуске, выход будет скрыт в списке параметров, поскольку он также использует внешним цифровым модулем модуляции (разъем **FSK Trig**). Этот терминал не может быть входом внешнего запуска и выходом внутреннего запуска одновременно.

4) **Примечание:** В случае запуска от внешнего источника параметры выхода будут недоступны для редактирования в списке параметров, выход запуска также выводится внешним цифровым модулем (разъем **FSK Trig**). Этот разъем не может быть использован в качестве входа внешнего запуска и выхода внутреннего запуска одновременно.

10.2.73апуск режима ГКЧ по фронту импульса

Внешний разъем **FSK Trig** цифровой модуляции может быть задан как вход или выход.

Когда разъем используется как вход (внешний источник запуска),

REdge означает , что нарастающий фронт внешнего сигнала запускает выходной сигнал в режиме ГКЧ;

DEdge. означает, что спадающий фронт внешнего сигнала запускает выходной сигнал в режиме ГКЧ.

Когда разъем используется как выход (внутренний источник запуска или ручной источник запуска), нарастающий фронт представляет собой выходной сигнал запуска нарастающего фронта; спадающий фронт представляет собой выходной сигнал запуска нарастающего фронта, а по умолчанию используется нарастающий фронт.

Подробный пример

Заданные параметры сигнала следующие:

режим ГКЧ ,

сигнала несущей частоты - прямоугольный сигнал с амплитудой 1 Впик-пик, коэффициентом заполнения 50%,

тип развертки частоты — линейный, начальная частота 1 кГц, конечная частота 50 кГц время ГКЧ до 2 мс, источник запуска –внутренний по переднему фронту Шаги настройки следующие:

1) Включите режим модуляции **Sweep**, для этого нажмите последовательно вкладки **CH1** → **Sweep** → **Linear** соответственно.

?				¥ 6
СН1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep Line	Burst	Channel
Base Type Line Lo	z Step			Out OFF
TrigSrc Intern	al			INV OFF
TrigOut Off Start 1.000,	000,000 kHz			Load HighZ
Stop 1.000, Time 10.000	000,000 MHz),000 ms			Сору СН1←СН2
1 High2 Line	2 Highz	Continue 3 HighZ	Continue 4	

2) Установите параметры сигнала несущей частоты

Нажмите **Base**, чтобы выбрать прямоугольную форму в качестве сигнала несущей частоты (по умолчанию выбран синус), поэтому этот шаг требует изменений!

Нажмите вкладку **Атрі**, чтобы открыть визуальную цифровую клавиатуру для ввода 1 В пп.

?				Ý 🗗
CH1	CH2	CH3	CH4	Utility
Continue	Modulate	Sweep Line	Burst	Channel
Base Type Sine S	iquere Ramp Pulse	~~~~ Arb		Out OFF
Ampl 1.00	0,0 Vpp			INV OFF
Offset 0.0 r NoiseSum OFF	nV			Load HighZ
				Сору СН1←СН2
1 HighZ	ine 2 HighZ	Continue 3 HighZ	Continue 4	

3) Установите начальную/конечную частоту, время ГКЧ , источник запуска и фронт

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться на уровень меню выше в интерфейс модуляции и настроить параметры ГКЧ.

4) Дал<u>ее:</u>

Выберите Linear в качестве линейного режима ГКЧ (по умолчанию).

Нажмите вкладку **Start**, чтобы открыть визуальную цифровую клавиатуру для ввода начальной часто<u>ты 1 к</u>Гц.

Нажмите вкладку **Stop**, чтобы открыть визуальную цифровую клавиатуру для ввода конечной частоты 50 кГц.

Нажмите вкладку **Time**, чтобы открыть визуальную цифровую клавиатуру для ввода время ГКЧ 2 мс.

Источник запуска **TrigSrc** – выберете **Internal** – внутренний запуск Выход запуска **TrigOut** – **Off** – отключен

5) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма сигнала в режиме ГКЧ , наблюдаемая через осциллограф, показана на рисунке ниже.

Рисунок 10.2.

10.3 Форма сигнала в пакетном режиме

Генератор **АКИП 3433** может синтезировать форму сигнала с заданным периодом цикла (импульсную последовательность).

Управление выходной последовательностью импульсов возможно в трех режимах запуска: внутренний, внешний и ручной , а также три типа импульсной последовательности включая : N-цикл, стробирование и бесконечную

Генератор может генерировать последовательность импульсов для синусоидального сигнала, прямоугольного сигнала, пилообразного сигнала, импульсного сигнала, произвольного сигнала (кроме постоянного тока) и шума (применимо только к стробирующей импульсной последовательности).

Режимы модуляции для каждого канала независимы, возможно устанавливать одинаковые или разные режимы модуляции для каждого канала.

10.3.1Включение пакетного режима

Выбор пакетного режима

Нажмите **СН1**→ и далее **Burst**, прибор выведет модулированный сигнал импульсной последовательности в соответствии с текущей настройкой.

Выбор формы сигнала несущей частоты

П Режим N-цикла поддерживает синусоидальный, прямоугольный, пилообразный, импульсный и произвольный сигнал (кроме постоянного тока).

П Режим стробирования поддерживает синусоидальный, прямоугольный, пилообразный, импульсный, произвольный (кроме постоянного тока) и шумовой сигнал.

□ Бесконечный режим поддерживает синусоидальный, прямоугольный, пилообразный, импульсный и произвольны<u>й сигнал</u> (кроме постоянного тока).

После выбора формы сигнала нажмите **Вазе**, чтобы отобразить несущую форму сигнала с правой стороны (по умолчанию — синусоида).

Настройки частоты сигнала несущей частоты

В режимах N-цикла и стробирования частота формы сигнала определяет частоту сигнала в течение периода пакета.

В режиме N-цикла выводит импульсную последовательность с указанным временем цикла и частотой сигнала несущей частоты.

В режиме стробирования, когда сигнал запуска триггера имеет высокий уровень. импульсная последовательность выводится с частотой сигнала несущей частоты .

Примечание: Частота формы волны отличается от периода импульсной строки. Импульсная строка используется для указания интервала между импульсными строками (только в режиме N-цикла). Частота по умолчанию — 1 кГц, см. Несущая волна настройки частоты AM-модуляции.

Поверните многофункциональную ручку и клавишу направления стрелкой или коснитесь вкладки **Freq**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единиц измерения.

10.3.2Выбор типа пакета

Генератор может выводить три типа импульсной последовательности: **N-цикл**, стробирование и бесконечность. Тип по умолчанию - **N-цикл**.

1) Режим цикла N

Нажмите **NCycle**, чтобы включить режим N цикла. В этом режиме Генератор выдает сигнал с заданным номером цикла (последовательность импульсов). После вывода заданного номера цикла генератор сигналов остановится и будет ждать следующего запуска.

Источник запуска в этом режиме быть внутренним, внешним (внешний нарастающий/падающий фронт) или ручным.

Поверните многофункциональную ручку и клавишу направления или нажмите **TrigSrc**, чтобы перейти к вышеуказанным режимам : **Internal, External (ExREdge, ExFEdge) и Manual**.

Примечание:

В случае запуска от внешнего источника параметры выхода будут недоступны для редактирования в списке параметров, поскольку выход запуска также выводится внешним цифровым модулем (разъем **FSK Trig**). Этот разъем не может быть использован в качестве входа внешнего запуска и выхода внутреннего запуска одновременно.

2) Режим стробирования

Чтобы включить режим стробирования нажмите **Туре**, далее нажмите **Gate**, и, чтобы перейти в режим стробирования.

В режиме стробирования последовательности импульсов источник запуска, выход запуска, фронт запуска, период пакета и повторяющийся номер цикла будут недоступны для редактирования в списке параметров.

Поскольку может использоваться только внешний источник запуска, Генератор сигнала запускается в соответствии с аппаратным обеспечением от внешнего интерфейса цифровой модуляции через разъем **FSK Trig** на задней панели.

Когда полярность положительная и входной сигнал от источника находится на высоком уровне, то выходной сигнал генератора представляет собой непрервную последовательность сигналов. Когда полярность входного сигнала находится на низком уровне, сначала завершается текущий период сигнала, а затем останавливается на уровне, соответствующем начальную фазе выбранного сигнала.

Для формы сигнала шума, когда стробируемый сигнал является паразитным, вывод немедленно останавливается.

Поверните многофункциональную ручку и нажмите клавишу направления или нажмите клавишу **Polarity**, чтобы выбрать режим стробирования **Positive** или **Negative**.

3) Бесконечный режим

Чтобы включить бесконечный режим, нажмите вкладку **Туре** и далее **Infinite**, В режиме бесконечной последовательности импульсов

В режиме бесконечной последовательности импульсов период пакета (период последовательности импульсов) и номер цикла будут недоступны для редактирования в списке параметров.

Бесконечная последовательность импульсов соответствует индексу бесконечного цикла сигнала. Генератор выдает непрерывный сигнал при получении сигнала запуска.

В этом режиме источник запуска последовательности импульсов может быть внутренним, внешним или ручным.

Поверните многофункциональную ручку и клавишу направления или нажмите **TrigSrc**, чтобы перейти к вышеуказанным режимам : **Internal, External (ExREdge, ExFEdge) и Manual**.

Примечание:

В случае запуска от внешнего источника параметры выхода будут недоступны для редактирования в списке параметров, поскольку выход запуска также выводится внешним цифровым модулем (разъем **FSK Trig**). Этот разъем не может быть использован в качестве входа внешнего запуска и выхода внутреннего запуска одновременно.

?				¥ 🗗
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep	Burst Infinite	Channel
Base	Gate Infinite			Out OFF
TrigSrc Inter	rnal			
TrigOut Off Phase 0.00	٠			Load HighZ
				Сору СН1-СН2
1 HighZ	inite: 2 HighZ	Continue 3 HighZ	Continue 4	

10.3.3 Начальная фаза пакетов

Начальная фаза пакетов - это фаза сигнала в начальной точке последовательности импульсов. Она находится в диапазоне от 0°~+360°, по умолчанию равна 0°.

Поверните многофункциональную ручку и клавишу направления стрелкой или коснитесь вкладки **Phase**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единиц измерения.

□ Для синусоидальной, прямоугольной, пилообразной и импульсной формы сигнала 0° — это точка, в которой сигнал проходит через 0 В (или значение смещения постоянного тока) в прямом направлении.

□ Для произвольной формы сигнала 0° — это первая точка сигнала, которая загружается в память.

Начальная фаза не оказывает никакого влияния на шумовую волну.

10.3.4 Период пакетной передачи

Период пакета (период импульсной последовательности) доступен только для режима N-цикла и определяется как время от одного пакета (импульсной последовательности) до следующего пакета.

В случае запуска от внешнего источника или ручной, период запуска будет недоступен для редактирования в списке параметров,

Диапазон периода пакета (периода импульсной последовательности) может быть установлен в диапазоне от 1 мкс до 500 с; диапазон по умолчанию составляет 5,000 мс.

Поверните многофункциональную ручку или коснитесь вкладки **TrigPeriod**, чтобы открыть визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения.

Применима следующая формула расчета:

Период пакета (период последовательности импульсов) ≥ периода сигнала × номер цикла (количество последовательностей импульсов) В данном случае период сигнала является обратной величиной частоты сигнала, указанной в поле «Выбор пакета».

□ Если период пакетной передачи (период последовательности импульсов) слишком короткий, Генератор автоматически увеличит заданный период, чтобы вывести заданное количество циклов.

10.3.5Подсчет пакетов

В режиме цикла N подсчет последовательности импульсов используется для указания числа циклов сигнала. Он находится в диапазоне от 1 до 50000 периодов и по умолчанию равен 2.

В режиме цикла N поверните многофункциональную ручку, нажмите клавишу направления или коснитесь вкладки **Сусіе**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения.

🗆 Применима следующая формула расчета:

Номер цикла < Период триггера × Частота сигнала

□ Если число циклов превышает указанный выше предел, Генератор увеличивает период импульсной последовательности, чтобы автоматически адаптировать заданное число импульсных последовательностей (частота сигнала не изменится).

10.3.6Выбор источника запуска

Генератор сигнала формирует последовательность импульсов после получения сигнала запуска и будет ждать следующего источника запуска. Источник запуска последовательности импульсов может быть внутренним, внешним и ручным. Поверните многофункциональную ручку или нажмите **TrigSrc**, чтобы выбрать источник запуска.

1) В случае внутреннего источника запуска Генератор выводит последовательность импульсов с заданной частотой. Частота выходной импульсной последовательности управляется периодом импульсов. Генератор может выдавать N-циклов или бесконечную серию импульсов.

2) В случае внешнего источника запуска Генератор будет запускаться аппаратным запуском внешней цифровой модуляции через разъем **FSK Trig** на

задней панели прибора. Генератор сигнала выдает последовательность импульсов при получении импульса TTL с заданной полярностью.

Примечание: В случае запуска от внешнего источника параметры выхода будут недоступны для редактирования в списке параметров, поскольку выход запуска также выводится внешним цифровым модулем (разъем **FSK Trig**). Этот разъем не может быть использован в качестве входа внешнего запуска и выхода внутреннего запуска одновременно.

3) В случае ручного запуска сообщение присутствует в интерфейсе настройки

текущего канала в правой части экрана. Нажмите **Manua**l, чтобы вывести последовательность импульсов в режимах **N цикла** или **Infinite**.

10.3.7Выход синхронизации

Если источник запуска выбран внутренний или ручной, сигнал запуска (прямоугольная волна) может быть выведен как сигнал синхронизации через внешний разъем цифровой модуляции (разъем **FSK Trig**), совместимый с уровнем TTL. По умолчанию выход триггера выключен.

Поверните многофункциональную ручку или нажмите **TrigOut**, чтобы перейти к **Close**, **REdge** и **DEdge**.

1) Внутренний источник запуска: Генератор выводит прямоугольную волну с коэффициентом заполнения 50% на внешний разъем цифровой модуляции **FSK Trig** от начала запуска пакетного режима.

2) Источник ручного запуска: Генератор выводит импульсы шириной более 1 мкс на внешний разъем цифровой модуляции **FSK Trig** от начала запуска пакетного режима.

3) Внешний источник запуска , опция выхода синхронизации будут недоступны для редактирования в списке параметров , и активизируется только внешним цифровым модулем (разъем **FSK Trig**). Этот разъем не может быть использован в качестве входа внешнего запуска и выхода внутреннего запуска одновременно.

10.3.8 Синхронизация по фронту

Внешний разъем цифровой модуляции **FSK Trig** может быть задан как вход или выход.

1) Когда разъем используется как **вход**, то может быть осуществлен запуск пакета по фронту при внешнем источнике запуска.

Режим **ExtREdge** означает, что нарастающий фронт внешнего сигнала запускает вывод пакета импульсов;

Режим **ExtFEdge** означает, что спадающий фронт внешнего сигнала запускает вывод пакета импульсов.

2) В режиме стробирования,

Когда полярность положительная, внешний сигнал с запускает вывод пакета с высоким уровнем ;

Когда полярность отрицательная, внешний сигнал выводит последовательность импульсов с низким уровнем.

3) Когда разъем используется как **выход**, (внутренний триггер или ручной источник запуска),

Нарастающий фронт представляет собой выходной сигнал синхронизации нарастающего фронта;

Спадающий фронт представляет собой выходной сигнал синхронизации спадающего фронта, и по умолчанию используется нарастающий фронт.

Подробный пример

Заданные параметры сигнала следующие:

пакетный режим,

сигнала несущей частоты - синусоида с периодом 5 мс, амплитудой 500 мВпик в качестве импульсной последовательности

тип последовательности равен N циклу период импульсов 15 мс

количество (номер) циклов 2

Шаги настройки следующие:

? CNT ¥ 6 Utility CH1 CH2 CH3 CH4 Burst Channel Modulate Continue Sweep NCycle WWW Base OFF Out Gat Infinite Тур TrigSrc Internal INV OFF TrigOut Off HighZ Load 2 Cycle TrigPeroid 5.000,0 ms Copy CH1←CH2 0.00 ° Phase 2

2) Выберите форму импульсного сигнала пакетной передачи

Нажмите **Base**, чтобы выбрать синусоиду в качестве сигнала несущей частоты 9по умолчанию выбрана синусоида), поэтому этот шаг не требует изменений.

Modulate	Sweep	Burst NCycle	Channel
re Ramp Pulse	~~~ Arb		Out OF
000,000 kHz	J		
nVpp	ΛΛ		
	IAA		Load Hig
			Сору СН1←С
	Pulse Pulse 000,000 kHz mVpp	Pulse Arb	DO0,000 kHz mVpp

Примечание: Если в интерфейсе настроек отображается **Freq**, это означает, что можно изменить только параметр частоты, но нельзя переключиться на период. Период со значением 2 мс соответствует частоте со значением 500 Гц, а их обратное отношение T=1/f. Нажмите **Freq**, чтобы выбрать частоту и **Period**, если требуется период.

?				4 []
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep	Burst NCycle	Channel
Base Type	Juare Ramp Pulse	Mrb Arb		Out OFF
Period 1.00	0,000,0 ms			INV OFF
Ampl 100.	0 mVpp	ΛΛ		
Offset 0.0 m	nV	ЦЦЦ		Load HighZ
NoiseSum OFF				Сору СН1-СН2
		V V		
1 Нівь2	And the second s	Continue 3 HighZ	Gontinue 4	HighZ Continue

Нажмите **Period**, чтобы открыть визуальную цифровую клавиатуру и ввести 5 мс. Нажмите **Ampl**, чтобы открыть визуальную цифровую клавиатуру и ввести 500 мВпп.

2) Установите период и количество циклов пакетной передачи

После настройки параметров сигнала несущей частоты нажмите **Туре**, чтобы вернуться на уровень меню выше в интерфейс модуляции и настроить параметры пакетного режима.

*?				\$ G
CH1	CH2	СНЗ	CH4	Utility
Continue	Modulate	Sweep	Burst NCycle	Channel
Base	VV− WWW Gate Infinite			Out OFF
TrigSrc Inter	nal			INV OFF
TrigOut Off		$-\Lambda$		Load HighZ
TrigPeroid 10.00	00,1 ms			Сору СН1-СН2
Phase 0.00		V V		
1 High2 NCy	vole 2 HighZ	Continue 3 High	z Continue 4	

Используйте вкладки панели параметров, чтобы ввести значение и выбрать единицу измерения.

6) Включите выходной канал

Нажмите кнопку **Out** для включения **ON** или нажмите клавишу **CH1** на передней панели, чтобы быстро настроить выходной 1 й канал. Его также можно включить в интерфейсе утилит, нажмите **Utility** → **Channel** → **Output** или дважды щелкните вкладку канала в нижней части экрана, чтобы перейти к включению/выключению. Подсветка клавиши **CH1** и вкладки **CH1** загорается, указывая на то, что выход канала 1 включен.

Форма импульсного сигнала, наблюдаемая через осциллограф, показана на рисунке ниже.

10.4 Форма сигнала произвольной формы

Генератор **АКИП 3433** хранит более 200 встроенных типов сигналов произвольной формы во внутренней энергонезависимой памяти. См. ниже Таблицу 10-4 (Встроенные сигналы произвольной формы).

Генератор позволяет выводить произвольную форму сигнала из внутренней или внешней памяти. Прибор также может создавать и редактировать сигналы произвольной формы с помощью программного обеспечения и считывает файл данных сигналов с внешнего носителя, через интерфейс USB данных на передней панели.

10.4.1 Включение режима вывода сигнала произвольной формы

Для перехода в режим формирования сигнала произвольной формы: нажмите **СН1** и далее **Arb** соответственно, прибор выведет модулированный сигнал в соответствии с текущей настройкой.

10.4.2Режим поточечного вывода /режим DDS

Генератор поддерживает режимы точка за точкой (Point by point) и прямого цифрового синтеза DDS.

В режиме (Point by point) Генератор сигнала автоматически вычисляет частоту выходного сигнала (4577.64Гц) в соответствии с длиной сигнала (например, 65536 точек) и частотой дискретизации. Генератор выводит точки сигнала одну за другой с этой частотой. Это может предотвратить потерю важной точки формы сигнала.

В режиме DDS по умолчанию Генератор выводит сигнал произвольной формы с помощью автоматической интерполяции или выбора точки в качестве фиксированной длины (8192 точек) и частоты из списка параметров.

Поверните многофункциональную ручку или коснитесь вкладки **Mode**, чтобы перейти к режимам Point by point и DDS. Интерфейс Point by point показан ниже.

?				∲ ¢
CH1	CH2	СНЗ	CH4	Utility
Continue Arb	Modulate	Sweep	Burst	Channel
Base Sine S	quare Ramp Pulse	Arb Harmonic Nois		Out OFF
Mode Poin	ts			INV OFF
Sampling 300.	000,000,0 MSa/s	X		
Ampl 100.	0 mVpp			Load HighZ
Offset 0.0 m	nV			Сору СН1←СН2
WaveFile ACo	s.bsv	points:65.536 K		
InsertType Zero	Hold			
1 HighZ Con	vv 2 High2	Continue 3 HighZ	Continue 4 Hi	

10.4.3Выбор произвольной формы сигнала

Генератор может выбирать произвольную форму волны из внутренней или внешней памяти.

Поверните многофункциональную ручку, нажмите клавишу направления или коснитесь **WaveFile**, чтобы войти в обширное меню стандартных форм по таблице 10.4 и выбрать необходимую.

(A) ? (((((((((((((((((((((((((((((((((((4 G
Local User External	
<i>Ř</i> .	
AntiTrigonome	
Bioelect	
Common	
Complex_Wavelets	
Engine	
Maths	
Medical	points:8.192 K
Noise	
Other	
Load Cancel	
1 HighZ Continue 2 HighZ Continue 3 HighZ	Continue 4 HighZ Continue

Выберите группу сигналов п<u>роизвольной формы, и затем последова</u>тельно нужную форму из нужного файла **WaveFile**→**Loca**I→**Common**→**AbsSine.bsv**,

(*)	\$ \$
Local User External	
/Common/	
Parent directory	
AbsSine.bsv	
AbsSineHalfbsv	
AmpALT.bsv	
AttALT.bsv	
🔊 GaussPulse.bsv	
Gaussian_monopulse.bsv	points:8.192 K
NPulse.bsv	
NegRamp.bsv	
Load Cancel	
1 HighZ Continue 2 HighZ Continue 3 HighZ	Continue 4 HighZ Continue

Нажмите **Load** (Загрузить), чтобы автоматически закрыть окно, выбор произвольной формы сигнала завершен.

Примечание: Генератор поддерживает длину менее 64 точек с форматом файла *.csv или *.bsv.

Таблица 10-4 Встроенные сигналы г	произвольной	формы
-----------------------------------	--------------	-------

Тип	Имя	Описание
Общие (15видов)	Sin	Сигнал Синусоидальная форма
	Square	Сигнал Прямоугольная форма
	Ramp	Сигнал Пилообразная форма
	NegRamp	Сигнал Отрицательный пилообразный форма

	PPulse	Положительный импульс
	NPulse	Отрицательный импульс
	Noise	Сигнал Форма шума
	Sinc	Функция синхронизация
	Cardiac	Электрокардиограф
	EEG	Электроэнцефалограмма
	DualTone	Двухтональный
		многочастотный
	AbsSine	Абсолютное значение синуса
	StairDn	Сигнал Ступенчатый вверх
	StairUp	Сигнал Ступенчатый вниз
	Trapezia	Сигнал Трапеция
Движущие (25 видов)	BandLimited	Сигнал с ограниченной
		полосой пропускания
	BlaseiWave	Вибрация при взрывных работах «Время-вибрация кривая скорости
	Butterworth	Фильтр Баттерворта
	Chebyshev1	Фильтр Чебышева I типа
	Chebyshev2	Фильтр Чебышева II типа
	Combin	Составная функция
	CPulse	Сигнал C-Pulse
	CWPulse	СW-импульсный сигнал
	DampedOsc	Затухающая вибрация Кривая «время-смещение»
	DualTone	Двухтональный сигнал
	Gamma	Гамма-сигнал
	GateVibar	Сигнал самовозбуждающиеся колебания затвора
	LFMPulse	Линейная частота модуляционный импульсный сигнал
	MCNoise	Шум Строительная техника
	Discharge	Кривая разряда Ni-MH батарея
	Pahcur	Текущая форма волны бесщеточный двигатель постоянного тока
	Quake	Форма волны землетрясения
	Radar	Сигнал радара
	Ripple	Пульсация мощности
	RoundHalf	Форма волны в полушарии
	RoundsPM	Форма волны RoundsPM
	StepResp	Сигнал отклика на скачок

	SwingOsc	Качающиеся колебания кривая функции времени
		Топоризионный сигнэл
	Voico	Гелевизионный сигнал
Marawaruwa (27	VOICE	
математические (27	Alfy Besseli	Функция Бесселя I класса
Бидову	Desseij	
	Besselk	Функция Бесселька
	Bessely	Функция Бесселя II класса
	Cauchy	Распределение Коши
	Cubic	Кубическая функция
	Dirichlet	Функция Дирихле
	Erf	Функция ошибки
	Erfc	Дополнительная ошибка
	ErfcInv	Обратная комплементарная функция ошибки
	ErfInv	Обратная функция ошибки
	ExpFall	Экспоненциальная
		падающая функция
	ExpRise	Экспоненциальная растущая функция
	Gammaln	Натуральный логарифм гаммы
	Gauss	Распределение Гаусса (Нормальное распределение)
	HaverSine	Гаверсированный синус
	Laguerre	Квартик Лагерр многочлен
	Laplace	Распределение Лапласа
	Legend	Полиномы КвинтикЛежандр
	Log	Функция десятеричного логарифма
	LogNormal	Распределение Логарифмическое нормальное
	Lorentz	Функция Лоренца
	Maxwell	Распределение Максвелла
	Rayleigh	Распределение Рэлея
	Versiera	Версиера
	Weibull	Распределение Вейбулла
	ARB_X2	Квадратичная функция
Секционированные модуляции (5 видов)	AM	Амплитудная модуляции синусоиды
	FM	Частота модуляции синусоилы
	PFM	Частотно-импульсная модуляция
	РМ	Фазовая модуляция синусоиды

	PWM	Широтно-импульсная модуляция
Биоэлектрически е сигналы (6 видов)	Cardiac	Электрокардиографический сигнал
	EOG	Электроокулограмма
	EEG	Электроэнцефалограмма
	EMG	Электромиография
	Pulseilogram	Сфигмография человека общая
	ResSpeed	Кривая скорости выдоха человека
Медицинские сигналы (4 вида)	LFPulse	Низкочастотный импульс электротерапевтическая волна
	Tens1	Форма сигнала чрескожной электрической стимуляции нерва 1
	Tens2	Форма сигнала чрескожной электрической стимуляции нерва 2
	Tens3	Форма сигнала чрескожной электрической стимуляции нерва 3
Стандарты (17 видов)	Ignition	Форма сигнала зажигания автомобиля двигателя внутреннего сгорания
	ISO16750-2 SP	Профильная карта автомобиля
	ISO16750-2 Starting1	Форма сигнала напряжения пуска автомобиля1
	ISO16750-2 Starting2	Форма сигнала напряжения пуска автомобиля 2
	ISO16750-2 Starting3	Форма сигнала напряжения пуска автомобиля 3
	ISO16750-2 Starting4	Форма сигнала напряжения пуска автомобиля 4
	ISO16750-2 VR	Форма сигнала при отключении нагрузки и сброса рабочего напряжения
	ISO7637-2 TP1	Форма импульсной помехи в цепях питания автомобиля, вызванной отключением электроэнергии
	ISO7637-2 TP2A	Форма импульсной помехи в цепях питания автомобиля , вызванной индуктивностью в проводке

	ISO7637-2 TP2B	Форма импульсной помехи в цепях питания автомобиля, вызванной отключение пускового чейнджера
	ISO7637-2 TP3A	Форма импульсной помехи в цепях питания автомобиля, вызванной конверсией
	ISO7637-2 TP3B	Форма импульсной помехи в цепях питания автомобиля, вызванной конверсией
	ISO7637-2 TP4	Форма сигнала при отключении нагрузки и сброса рабочего напряжения автомобиля , перед запуском
	ISO7637-2 TP5A	Форма импульсной помехи в цепях питания автомобиля, вызванной отключением батареи
	ISO7637-2 TP5B	Форма импульсной помехи в цепях питания автомобиля, вызванной отключением батареи
	SCR	Функция Температура спекания частиц SCR
	Surge	Сигнал перенапряжения
Тригонометричес кие (21 вид)	CosH	Гиперболический косинус
	CosInt	Функция Интеграл косинуса
	Cot	Функция котангенса
	CotHCon	Функция Вогнутый гиперболический котангенс
	CotHPro	Функция Выпуклый гиперболический котангенс
	CscCon	Функция Вогнутый косинус
	CscPro	Функция Выпуклый косинус
	CotH	Функция Гиперболический котангенс
	CscHCon	Функция Вогнутый гиперболический косеканс
	CscHPro	Функция Выпуклый гиперболический косеканс
	RecipCon	Функция Взаимное действие подавление
	RecipPro	Обратная проекция Взаимное действие подавление

	SecCon	Функция Спад косеканса
	SecPro	Обратная проекция Спад косеканса
	SecH	Функция Гиперболический косеканс
	Sinc	Функция синус
	SinH	Функция Гиперболический синус
	SinInt	Функция Интеграл синуса
	Sqrt	Функция квадратного корня
	Tan	Функция тангенса
	TanH	Функция Гиперболический тангенс
Обратная тригонометрические (17 видов)	ACos	Функция арккосинуса
	ACosH	Функция Аркгиперболический косинус
	ACotCon	Функция Аркгиперболический котангенс
	ACotPro	Функция Выпуклый арккотангенс
	ACotHCon	Функция Вогнутый арккотангенс
	ACotHPro	Функция Выпуклый арк гиперболический котангенс
	ACscCon	Функция Вогнутый арк гиперболический котангенс
	ACscPro	Функция Выпуклый арккосеканс
	ACscHCon	Функция Вогнутый арккосеканс
	ACscHPro	Функция Выпуклый аркгиперболический косеканс
	ASecCon	Функция Вогнутый аркгиперболический косеканс
	ASecPro	Функция Выпуклый арксеканс
	ASecH	Функция Вогнутый арксеканс
	ASin	Фунция арксинус
	ASinH	Фунция аргиперболический синус
	ATan	Фунция арктангенс

	ATanH	Фунция аргиперболический
		тангенс
Шум (6 видов)	NoiseBlue	Синий шум
	NoiseBrown	Коричневый шум (красный
	NoicoCray	Шум)
	NoiseBink	Серый шум
	NoisePilik	Розовый шум
	NoisePulpie	Фиолетовый шум
0	Noisewhite	Ониа Барала
Окно выоорки (17видов)	Bartlett	
(1766,200)	Darthannwin	
	Blackman	Окно Блэкмана
	BlackmanH	Окно БлэкманаН
	BohmanWin	Окно Бохмана
	Boxcar	Прямоугольное окно
	ChebWin	Окно Чебышева
	GaussWin	Гауссово окно
	FlattopWin	Окно с плоским верхом
	Hamming	Окно Хэмминга
	Hanning	Окно Ханнинга
	Kaiser	Окно Кайзера
	NuttallWin	Минимум четыре Окна Блэкмана Харриса
	ParzenWin	Парзеновское окно
	TaylorWin	Окно Тейлаора
	Triang	Окно четверти(Фейер)
	TukeyWin	Окно Тьюки
Комплексные вейвлеты (7	Complex	Функция Комплексная
видов)	Frequency B- spline	частота В-сплайна
	Complex	Комплексная гауссова
	Gaussian	функция
	Complex Morlet	Комплексный вейвлет Морле
	Complex Shannon	Комплексная функция Шеннона
	Mexican hat	Вейвлет Мексиканская
	Meyer	Вейвлет Мейера
	Morlet	Вейвлет Морле
Остальные (38 видов)	ABA 1 1	
	ABA 1 2	
	ALT 03	
	 ALT_04	
	ALT 05	
	AUDIO	
	circle	Круговая модуляция
	COIL 2 1	
	COIL 2 2	
	DC 04	
	diamond	Алмазная модуляция
	ECT_1_2	

EGR_2	
EGR_3_2	
EST_03_2	
Heart	Сердечная модуляция
IAC_1_1	
INJ_1_1	
INJ_2	
INJ_3	
INJ_4	
INJ_5_6	
INJ_7	
KS_1_1	
MAF_1_1	
MAF_1_2	
MAF_5_3	
MAP_1_1	
MAP_1_2	
MC_3	
Mexican hat	Вейвлет Мексиканская шляпа
O2PROPA1	
O2PROPA2	
O2SNAP	
STAR02_1	
TPS_1_1	
TPS_1_2	
UNIT	Голосовые клипы

10.4.4 Создание и редактирование сигнала произвольной формы с помощью программного обеспечения AWP

Генератор сигналов создает и редактирует сложную произвольную форму сигнала с помощью программного обеспечения для компьютера.

Мощное программное обеспечение управляющего компьютера может использоваться для создания и редактирования **complex** произвольной формы сигнала (произвольной амплитуды и формы).

Для конкретных операций, пожалуйста, обратитесь к **ПРИЛОЖЕНИЮ Abritrary Waveform Programming**. Созданную произвольную форму сигнала можно импортировать в Генератор.

10.5 Сигналы цифровых протоколов

Генератор АКИП 3433 может выводить три типа протокольных условий: IIC, SPI и UART. (TTL) Соответствующие параметры протокола могут быть установлены в различных режимах протокола. См разделы выше.

Включите выходной терминал на передней панели, чтобы экспортировать соответствующий сигнал.

10.5.1 Протокол SPI

Генератор сигналов может создавать настраиваемые параметры сигнала протокола SPI в режиме протокола SPI.

Выбор режима SPI

Нажмите Utility \rightarrow Digita \rightarrow	SPI,	чтобы	включить	режим	SPI	для	вывода
текущего сигнала протокола SPI.							

?	CVT					\$₽
С	H1	CI	H2	СНЗ	CH4	Utility
Channel	SPI	Ampl	3.000 V		J	OFF
Coupling	IIC	Clock SendType	1.000 kHz Auto	÷		
Merge	IIC	Interval	10.000,000 ms			ļ
Counter	UART	Format				SCLK -
Digital						 cs
System		MSB	(bit6) bit5) b	it4 🗙 bit3 🔪 bi	t2 X biti X LSB Y	- NOSI -
1 HighZ		ontinue 2	lighZ Conti	nue 3 HighZ	Gontinue 4 H	ighZ

Установка тактовой частоты

Значение тактовой частоты SPI может быть установлена пользователем. В режиме SPI нажмите **Clock**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения.

Диапазон тактовой частоты может быть установлен в диапазоне от 1 Гц до 50 МГц.

Настройка формата данных

Формат данных SPI может быть установлен пользователем. Он имеет два типа формата: шестнадцатеричный и символьный. В режиме SPI нажмите **Format**, чтобы перейти к значениям **HEX** и **Char**.

Ввод данных

Нажмите на пустое поле ввода параметров на экране справа , чтобы открыть визуальную цифровую клавиатуру для ввода битов, и нажмите клавишу ввода, чтобы завершить ввод.

?	Corr											\$ G
C	Н1		CH2	2		CHE	3		СН	4		Utility
Channel	SPI	Ampl		3.000 V								OFF
Coupling		Clock SendTyp	e .	1.000 kH Auto	z	-						
Merge	IIC	Interval		10.000,0	00 ms							
1	UART	1	2	3	4	5	6	7	8	9	0	
Counter		Q	W	E	R	т	Y	U	I	0	Ρ	ICLK -@
Digital		A	S	D	F	G	Н	J	К	L		x –®
System		Aa	Z	х	C	٧	В	N	М		+	10SI -
1 нівьг			2 Hia				3 HighZ			/ nue 4		

Настройка типа отправки

Имеется два типа отправки: автоматический и ручной.

В автоматическом режиме прибор отправляет установленный код протокола в течение определенного времени; в ручном режиме нажмите клавишу отправки, чтобы отправить установленный код протокола.

1)Режим автоматической отправки

Нажмите **SendType**, чтобы выбрать **Auto** автоматический режим (по умолчанию), включите функцию вывода, сигнал протокола автоматически и непрерывно выводит форму волны из интерфейса канала.

2)Режим ручной отправки

Нажмите **SendType**, чтобы выбрать **Manual** ручной режим (по умолчанию — автоматический), нажмите **Send** справа, чтобы отправить заданную форму волны.

Установка интервала времени

Если режим отправки — автоматический, установите интервал времени отправки данных в соответствии с фактическими условиями. Нажмите вкладку **Interval**, чтобы вывести визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения. Диапазон интервала времени может быть установлен от 20 нс до 1000 с.

Подробный пример

Заданные параметры сигнала следующие: режиме протокола SPI, шестнадцатеричный формат данных 13, 21, 34, 55, 89, тактовая частота 15 кГц, интервал времени 5 мс, Шаги настройки следующие:

1) Включить режим SPI Нажмите последовательно **Utility** \rightarrow **Digital** \rightarrow **SPI** соответственно.

?	Corr					Ý 🗗
C	H1	CI	H2	СНЗ	CH4	Utility
Channel	SPI	Ampl	3.000 V			OFF
Coupling	IIC	SendType	Auto	j.		
Merge	UART	Interval Format	10.000,000 ms HEX] .		ļ
Counter						
Digital						cs
System		MSB	(bits X bits X b	it4 🗙 bit3 🔪 bi	t2 / biti / LSB /	HOSI -
1 HighZ		ontinue 2		nue 3 HighZ	Continue 4 H	

2) Уст<u>анови</u>те параметры данных

Нажмите **Clock**, чтобы открыть цифровую клавиатуру для ввода 15 кГц. Нажмите **Interval**, чтобы открыть цифровую клавиатуру для ввода 5 мс. Нажмите пустое поле ввода, чтобы ввести **13**, **21**, **34**, **55**, **89**.

?	CVT					Ý 🗗
C	Н1	C	H2	СНЗ	CH4	Utility
Channel	SPI	Ampl	3.000 V	13 21 34 55 8	9	OFF
		Clock	15.000 kHz			
Coupling	IIC	SendType	Auto			
Merge		Interval	5.000,000 ms			
2	UART	Format	HEX			
Counter						
Digital						— cs —
System		HSB	bite / bit5 / 1	bit4 🗙 bit3 🗙 b:	it2 (bit1) LSB)	MOST -
1 Riab2		w/v ontinue	HighZ Gont	inue 3 HighZ	Continue 4	fighZ

3) Включить функцию вывода

Нажмите **ON**, чтобы включить функцию вывода соответствующих каналов Генератора, **CH2** - это SPI-SCLK, CH3 - это SPI-CS, **CH4** - это SPI-MOSI.

?	Corr					\$ []
CI	H1	C	H2	CH3	CH4	Utility
Channel	SPI	Ampl	3.000 V	13 21 34 55 89		ON
	5.1	Clock	15.000 kHz			
Coupling	IIC	SendType	Auto			
Merge		Interval	5.000,000 ms			
	UART	Format	HEX			
Counter						SCLK -
Digital						cs
System		MSB	(bite) bite)	bit4 🗙 bit3 🗙 bit	2 / biti / LSB) MOSI - (3)
1 Hisb2		vAv ontinue:	SPI-SCLK	<mark>3</mark> si	PI-CS	SPI-MOSI

10.5.2Цифровой протокол IIC

Генератор сигналов может создавать настраиваемые параметры сигнала протокола в режиме протокола IIC.

Включение режима протокола IIC

Нажмите последовательно вкладки **Utility** → **Digita** → **IIC**, чтобы включить режим **IIC** для вывода текущего сигнала протокола IIC.

?	CVT					\$⊈
C	H1	C	H2	СНЗ	CH4	Utility
Channel	SPI	Ampl	3.000 V			OFF
Coupling	IIC	Clock Address	1.000 kHz 1			
Merge	UART	SendType Interval	Auto 10.000,000 ms]		Į
Counter		Format	HEX			
Digital		-m	mm	unn	www	
System		A6 A	5 (44) 43) 42) 41) 48	W ackD7 D6 D		SDA —
1 HighZ		w/v ontinue: 2	HighZ Conti	nue 3 HighZ	Gontinue 4 H	igh2

Установка тактовой частоты

Отправка тактовой частоты IIC может быть установлена пользователем. В режиме IIC нажмите **Clock**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения.

Диапазон тактовой частоты может быть установлен в диапазоне от 1 Гц до 50 МГц.

Настройка формата данных

Формат данных IIC может быть установлен пользователем. Он имеет два типа формата: шестнадцатеричный и символьный. В режиме IIC нажмите **Format**, чтобы перейти к значениям **HEX** и **Char**.

Ввод данные

Нажмите на пустое поле ввода параметров на экране справа, чтобы открыть визуальную цифровую клавиатуру для ввода битов, и нажмите клавишу ввода, чтобы завершить ввод.

Настройка типа отправки

Пожалуйста, обратитесь к разделу 10.5.2

Установка интервала времени

Если режим отправки — автоматический, установите интервал времени отправки данных в соответствии с фактическими условиями. Нажмите вкладку **Interval**, чтобы вывести визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения. Диапазон интервала времени может быть установлен от 20 нс до 1000 с.

Подробный пример

Заданные параметры сигнала следующие: режиме протокола IIC, выходной адрес на 10 бит, значения 65, тактовая частота 500 кГц, десятичный формат данных 17, 19, 21, 29, 31, интервал времени 5 мс Шаги настройки следующие:

1) Включите режим IIC

Нажмите **Utility** → **Digita** → **IIC**, чтобы включить режим IIC для вывода текущего сигнала протокола IIC.

?	Corr					$\psi \ominus$
C	Н1	C	Н2	СНЗ	CH4	Utility
Channel	SPI	Ampl	3.000 V			OFF
Coupling	IIС	Clock	1.000 kHz			
Merge	UART	SendType Interval	Auto 10.000,000 ms			
Counter		Format	HEX			
Digital		m		unn	mm	- scl -®
System		A6 \A	5 /44 /43 /42 /41 /48	W ackD7 D6 D6	5 D4 D3 D2 D1 D9 ack	sda –
1 HighZ		wv ontinue 2		nue 3 HighZ	Continue 4 Hi	

2) Уст<u>анови</u>те параметры данных

Нажмите **Clock**, чтобы открыть цифровую клавиатуру для ввода 15 кГц. Нажмите **Interval**, чтобы открыть цифровую клавиатуру для ввода 5 мс. Нажмите пустое поле ввода, чтобы ввести 17, 19, 23, 29, 31.

3) Включить функцию вывода

Нажмите **ON**, чтобы включить функцию вывода соответствующих каналов Генератора, **CH3** – IIC-SCL, **CH4** – IIC-SDA.

?	COT					¥ 🗗
CI	н1	CI	H2	CH3	CH4	Utility
Channel		Ampl	3.000 V	07 19 23	29 31	
	SPI	Clock	15.000 kH	z		ON
Coupling	IIC	Address	1			
Merge		SendType	Auto			
	UART	Interval	5.000,000	ms		
Counter		Format	HEX			
Digital		<u></u>	w	mm	nnnn	∏ sci(3)
System			5 (44)43 (42	A1 A8 W RCKD7	D6 (D5 (D4 (D3 (D2 (D1)	Deveck SDA –
1 HighZ		wy Iontinue 2		Continue	IIC-SCL	4 11C-SDA

10.5.3 Протокол UART

Генератор сигналов может создавать настраиваемые параметры сигнала последовательного протокола в режиме протокола UART.

Выбор режим UART

Нажмите последовательно вкладки **Utility** → **Digital** → **UART**, чтобы включить режим **UART** для вывода текущего сигнала протокола UART.

Установка скорости передачи данных

Скорость передачи данных может быть установлена пользователем. В режиме UART нажмите **Baudrate**, чтобы вывести на экран визуальную цифровую клавиатуру для ввода значений и выбора единицы измерения. Диапазон скорости передачи данных может быть установлен от 1 до 1000000.

Настройка формата данных

Формат данных UART может быть установлен пользователем. Он имеет два типа формата: шестнадцатеричный и символьный. В режиме UART нажмите **Format**, чтобы перейти к значениям **HEX** и **Char**.

Установить данные

Нажмите на пустое поле ввода справа, чтобы открыть визуальную цифровую клавиатуру для ввода битов, и нажмите клавишу ввода, чтобы завершить ввод.

Настройка тип отправки

Пожалуйста, обратитесь к разделу 10.5.1. Настройка тип отправки

Выбор скорость передачи данных

Скорость передачи данных по умолчанию составляет 115200 бит/с. Нажмите **Baudrate**, чтобы открыть визуальную цифровую клавиатуру для ввода значений.

Установка количество бит

Он может устанавливать различные биты в режиме UART, данные имеют 4, 5, 6, 7, 8 бит. Бит по умолчанию - 8. Нажмите **Ваиdrate**, чтобы открыть визуальную цифровую клавиатуру для ввода значений.

Установка стоп-бит

Он может устанавливать разные стоповые биты в режиме UART. Нажмите **Stop**, чтобы выбрать **1bit** или **2bit**. По умолчанию 1bit.

Установить режим проверки на четность

Нажмите вкладку **Verify** для перехода между вариантами **None, Even, Odd**. («Нет», «Четный», «Нечетный»).

Подробный пример

Заданные параметры сигнала следующие: режиме протокола UART,

скорость передачи данных на выходе на 4800 б/с бит данных на 8 бит, шестнадцатеричный формат данных 5, 20, 13, 14, режим проверки нечетности, стоповый бит на 1 бит, интервал времени 2 мс. Шаги настройки следующие:

1) Включить режим UART

6. Установить параметр данных

Нажмите **Baudrate**, чтобы открыть визуальную цифровую клавиатуру и ввести 4800 б/с

Нажмите **Data**, чтобы открыть визуальную цифровую клавиатуру и выбрать 8 бит.

Нажмите **Interval**, чтобы открыть цифровую клавиатуру для ввода и ввести 2 мс.

Формат данных и стоповый бит используют параметр по умолчанию.

?	(Cor					\$₽
C	H1	CF	12	СНЗ	CH4	Utility
Channel	SPI	Ampl	3.000 V	05 20 13 14)	OFF
Coupling	IIC	Baudrate Data	480,0 8bit			
Merge		Stop	1bit			ļ
	UART	Verify	Odd			
Counter		SendType	Auto			
Digital		Interval Format	2.000,000 ms HEX			
System		De	(D1)(D2)(D3	04 05 De	6 D7 Verify	тх —
1 HighZ	C-	~∿ ontinue 2 H	ighZ Contir	HighZ	Continue 4 H	ighZ Continue

Включить функцию вывода Нажмите **ОN**, чтобы включить функцию вывода соответствующих каналов Генератора, **СН4** — это UART-TX.

?	(Cor					Ý 🗗
C	H1	CH	12	СНЗ	CH4	Utility
Channel	SPI	Ampl Baudrate	3.000 V 480,0	05 20 13 14		ON
Coupling	IIC	Data Stop	8bit 1bit			
Merge	UART	Verify	Odd			
Counter		SendType	Auto			
Digital		Interval Format	2.000,000 ms HEX			
System		De (De	(D1)D2 (D3	XD4 XD5	D6 D7 Verify	
1 HighZ	C	∽∿ ontinue 2 H		nue 3 HighZ	Continue	UART-TX

11 СИСТЕМНЫЕ СООБЩЕНИЯ И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Возможные неисправности при использовании UTG9000T и методы их устранения перечислены ниже. Пожалуйста, обработайте неисправность, следуя соответствующим шагам. Если ее невозможно устранить, свяжитесь с дилером или местным офисом и предоставьте информацию о модели (нажмите Utility → System).

4.1 Нет изображения на экране (Пустой экран)

Если генератор сигналов по-прежнему не отображает изображение после нажатия выключателя питания на передней панели.

1) Проверьте, правильно ли подключен прибор к источнику питания.

2) Проверьте, чтобы выключатель питания на задней панели и находится ли он в положении «I».

3) Проверьте, нажата ли подключена кнопка питания на передней панели (изменился ли цвет подсветки).

4) Перезагрузите прибор **Factory Setting** еще раз.

5) Если прибор по-прежнему не работает, обратитесь к поставщику для проведения технического обслуживания изделия.

4.2 Нет выходного сигнала

Настройки верны, но прибор не отображает выходную форму сигнала.

1) Проверьте, правильно ли подключены кабель BNC и выходной терминал.

2) Проверьте кнопки СН1, СН2, СН3 или СН4 включены.

3) Сохраните текущие настройки на USB-накопитель, а затем нажмите кнопку **Factory Setting** заводских настроек, чтобы перезапустить прибор.

4) Если прибор по-прежнему не работает, обратитесь к поставщику для проведения технического обслуживания изделия.

4.3 Не удается распознать USB-накопитель

1) Проверьте, исправен ли USB-накопитель.

2) Убедитесь, что USB-накопитель имеет тип Flash, прибор не предназначен для съемных жестких USB-дисков.

3) Перезагрузите прибор и снова вставьте USB-накопитель, чтобы проверить, будет ли он работать нормально.

4) Если USB-устройство по-прежнему не распознается, обратитесь к поставщику для проведения технического обслуживания изделия.

12 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Описанные ниже операции должны выполняться квалифицированным пользователем. Во избежание поражения электрическим током не выполняйте никаких операций, кроме тех, что указаны в настоящем описании.

12.1 Выбор напряжения питающей сети

Генератор рассчитан на работу от сети с напряжение от 100В до 240В, с частотой питающей сети 47-63 Гц. Переключение от одного сетевого напряжения к другому осуществляется автоматически.

12.2 Уход за внешней поверхностью осциллографа.

Для чистки осциллографа, используйте мягкую ткань смоченную спиртом или водой. Оберегайте осциллограф от попадания на корпус бензина, толуола, ксилола, ацетона или подобных растворителей. Не используйте абразив для чистки загрязнённых поверхностей осциллографа.

12.3 Обновления программной прошивки прибора

Пользователь может получить пакет обновления программы только от поставщика. Обновление генератора осуществляется с помощью встроенной системы обновления программы.

Чтобы убедиться, что текущая программа генератора является последней версией выпуска небходимо:

1) Нажмите клавишу **Utility** → далее вкладку **System**, чтобы получить информацию о модели, аппаратной и программной версии.

2) Обновите прибор, следуя инструкциям в файле обновления

13 ПРАВИЛА ХРАНЕНИЯ

13.1 Кратковременное хранение

Прибор допускает кратковременное (гарантийное) хранение в капитальном не отапливаемом и отапливаемом хранилищах в условиях:

• для не отапливаемого хранилища:

температура воздуха от - 10°С до + 70°С;

относительная влажность воздуха до 70% при температуре +35°С и ниже без конденсации влаги;

• для отапливаемого хранилища:

температура воздуха от +0°С до +50°С;

относительная влажность воздуха до 80% при температуре +35°C и ниже без конденсации влаги.

Срок кратковременного хранения до 12 месяцев.

13.2 Длительное хранение

Длительное хранение прибора осуществляется в капитальном отапливаемом хранилище в условиях:

• температура воздуха от -20°С до +70°С;

• относительная влажность воздуха до 80% при температуре +70°С и ниже без конденсации влаги.

Срок хранения прибора 10 лет.

В течение срока хранения прибор необходимо включать в сеть не реже одного раза в год для проверки работоспособности.

На период длительного хранения и транспортирования производится обязательна консервация прибора.

14 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие параметров прибора данным, изложенным в разделе «Технические характеристики» при условии соблюдения потребителем правил эксплуатации, технического обслуживания и хранения, указанных в настоящем Руководстве.

Гарантийный срок указан на сайте www.prist.ru и может быть изменен по условиям взаимной договоренности.

Срок службы

Средний срок службы прибора составляет (не менее), - 5 лет.

Изготовитель:

UNI-TREND TECHNOLOGY (CHINA) CO., LTD, Китай No 6, Gong Ye Bei 1st Road, Songshan Lake National High-Tech Industrial Development Zone, Dongguan City, Guangdong Province, China Телефон: +86 769 8572 3888

Представитель в России:

Акционерное общество «Приборы, Сервис, Торговля» (**AO «ПриСТ»**) 111141, г. Москва, ул. Плеханова 15А Тел.: (495) 777-55-91 (многоканальный) Электронная почта <u>prist@prist.ru</u> URL: <u>www.prist.ru</u>

15 ПРИЛОЖЕНИЕ А: ЗАВОДСКИЕ НАСТРОЙКИ ГЕНЕРАТОРОВ АКИП 3433

Параметр	Значение	Установка
Channel Parameter	Параметр канала	
Current carrier wave	Текущая несущая	Sine wave
	волна	
Output load	Выходная нагрузка	High resistance
Channel merge	Объединение каналов	Off
Channel coupling	Канальное соединение	Off
Sync output	Синхронный выход	Off
Channel output	Выход канала	Off
Channel output inverse	Выходной канал инверсный	Off
Amplitude limit	Предел амплитуды	Off
Upper amplitude limit	Верхний предел амплитуды	+1V
Lower amplitude limit	Нижний предел	-1V
	амплитуды	
Fundamental Wave	Основная волна	
Frequency	Частота	1kHz
Amplitude	Амплитуда	100mVpp
DC offset	Смещение постоянного тока	0mV
Initial phase	Начальная фаза	0°
Duty ratio of square	Коэффициент	50%
wave	заполнения	
	прямоугольного	
	импульса	
Degree of symmetry of	Степень симметрии	50%
ramp wave	наклонного сигнала	
Duty ratio of pulse	Коэффициент	50%
wave	заполнения пульсового	
	сигнала	
Rising edge of pulse	Нарастающий фронт	lns
	Пульсового сигнала	1
Failing edge of pulse	Заднии фронт	Ins
Arbitrary Waya		Arbitrany Mayo
Ruilt in arbitrary wave	Произвольная волна	
Built-in arbitrary wave		ACUS
Play mode		פחח
		005
Modulation source		Interna
Modulation wave	Водна модуляции	Sine wave
Modulation frequency	Частота модуляции	100Hz
Modulation depth	Глубина модуляции	100%
EM Modulation	ЧМ-молуляция	10070
Modulation source	Источник модуляции	Internal
Modulation wave	Волна молуляции	Sine
		wave
Modulation frequency	Частота модуляции	100Hz
Frequency deviation	Отклонение частоты	1kHz
PM Modulation	ФМ Модуляция	
Modulation source	Источник модуляции	Internal
Modulation wave	Волна модуляции	Sine wave
Modulation frequency	Частота модуляции	100Hz
Phase deviation	Фазовое отклонение	180°

PWM Modulation	ШИМ-модуляция	
Modulation source	Источник модуляции	Internal
Modulation wave	Волна модуляции	Sine wave
Modulation frequency	Частота модуляции	100Hz
Duty ratio deviation	Отклонение	49.999825%
	коэффициента	
	заполнения	
ASK Modulation	Модуляция ASK	
Modulation source	Источник модуляции	Internal
ASK rate	Ставка спроса	100Hz
FSK Modulation	FSK-модуляция	
Modulation source	Источник модуляции	Internal
FSK rate	Ставка ФСК	100Hz
Hopping frequency	Частота скачков	100kHz
PSK Modulation	Модуляция PSK	
Modulation source	Источник модуляции	Internal
PSK rate	Ставка PSK	100H
PSK phase	фаза ПСК	0°
BPSK Modulation	Модуляция BPSK	
Carrier wave	Несущая волна	Sine wave
Modulation sourc	Источник модуляции	PN3
Phase	Фаза	0°
Phase 1	Фаза 1	90°
Bitrate	Битрейт	100bps
QPSK Modulation	QPSK-модуляция	
Carrier wave	Несущая волна	Sine wave
PN Code	Код PN	PN3
Bitrate	Битрейт	100bps
Phase 1		00
Phase 2		900
Phase 3		180°
		270
	модуляция оск	
Modulation source	Источник модуляции	Internal
	Ставка ОСК	100Hz
DSB-AM Modulation		100112
Modulation source	Источник модуляции	Intern al
Modulation wave	Волна модуляции	Sine
		wave
Modulation frequency	Частота модуляции	100Hz
Modulation depth	Тлубина модуляции	100%
QAM Modulation	QAM-модуляция	
Constellation	Созвездие	QAM4
Coding code	Кодирование кода	PN3
QAM rate	Скорость QAM	100bps
SUM Modulation	СУММА МОДУЛЯЦИЯ	
Modulation source Internal	Источник модуляции	Internal
Modulation wave Sine wave	Волна модуляции	Sine wave

Modulation frequency 100Hz	Частота модуляции	100Hz
Modulation depth 100%	Глубина модуляции	100%
Frequency Sweep	Частота развертки ГКЧ	
Type of frequency	Тип частотной развертки ГКЧ	sweep Linear
Initial frequency	Начальная частота	1kHz
Stop frequency	Частота остановки	1MHz
Frequency Sweep time	Время развертки частоты	10ms
Trigger source	Источник триггера	Internal
Trigger output	Триггерный выход	OFF
Pulse string	Импульсная строка	
Mode of pulse string	Режим импульсной строки	N cycle
Initial phase	Начальная фаза	0°
Burst period (period of pulse string)	Период импульса (период последовательности импульсов)	5ms
Cycle number	Номер цикла	2
Gated polarity	Закрытая полярность	Positive
Trigger source	Источник триггера	Internal
Trigger output	Триггерный выход	OFF
System Parameter	Системный параметр	
IP type	Тип IP-адреса	DHCP
Clock source	Источник тактовой частоты	Internal
Clock output	Тактовый выход	OFF
Sound of buzzer	Звук зуммера	ON
Separator of numbers	Разделитель чисел	1
Backlight	Подсветка	100%
Language	Язык управления	Depend on factory setting