10 ПРОВЕДЕНИЕ ПОВЕРКИ

CO	ГЛАСС	OBAHO
Рук	соводит	ель ГЦИ СИ -
Зам	и. Генер	ального директора
ФΓ	У«РОС	TECT – Москва»
		А.С.Евдокимов
«	>>	2005 1

Настоящий раздел устанавливает методы и средства поверки генераторов сигналов специальной формы (далее генераторов) ГСС-05, ГСС-10, ГСС-20, ГСС-40, ГСС-80, ГСС-120, ГСС-05/1, ГСС-10/1, ГСС-20/1, ГСС-40/1, ГСС-80/1, ГСС-120/1. Межповерочный интервал — 1 год.

10.1 Операции поверки

- 10.1.1 При первичной и периодической поверке генераторов выполняются операции, указанные в таблице 10.1.
- 10.1.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

Таблица 10.1 - Перечень операций поверки.

	TT		<u> </u>
	Номер	Проведение операции при	
Наименование операции	пункта	первичной	периоди-
ттаимснование операции	документа	поверке	ческой
	по поверке		поверке
Внешний осмотр	10.6.1	+	+
Опробование	10.6.2	+	+
Определение погрешности установки частоты	10.6.3	+	+
Определение погрешности установки уровня	10.6.4	+	+
сигнала синусоидальной формы на частоте 1 кГц			
Определение неравномерности АЧХ сигнала	10.6.5	+	+
синусоидальной формы			
Определение погрешности установки	10.6.6	+	+
постоянного смещения			
Определение относительного уровня гармоник	10.6.7	+	+
сигнала синусоидальной формы			
Определение длительностей фронта и среза	10.6.8	+	+
сигнала типа меандр и сигнала прямоугольной			
формы			
Определение погрешности измерения частоты и	10.6.9	+	+
чувствительности генератора в режиме			
частотомера			
частотомера			

10.2 Средства поверки

- 10.2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 10.2.
- 10.2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.

Таблица 10.2 - Перечень средств поверки.

Номер пункта	Наименование и тип основного или вспомогательного средства			
методики	поверки; обозначение нормативного документа, регламентирующего			
поверки	технические требования и метрологические и основные технические			
1	характеристики средства поверки.			
10.6.2, 10.6.8	Осциллограф Agilent 54645D: δ _U = ±(1,5 3)%;			
	$\Delta_{\rm t}=10^{-4}{ imes}{ m t}+0.02{ imes}({ m \kappa}{ m -}{ m T}$ развертки)			
10.6.3	Частотомер Ч3-64: диапазон частот 0,005 Гц – 1500 МГц,			
	$\delta_{f,T} = \pm 5 \times 10^{-7} + 10^{-9} / \tau_{c \text{чета}}$			
10.6.3, 10.6.9	Стандарт частоты Ч1-81/1: $\delta f = \pm 1 \times 10^{-9}$ за 1 год			
10.6.4, 10.6.6	Мультиметр Agilent 34401A: 1 мВ – 1000 В, $\delta U_{-} = 0.005 \%$, $\delta U_{\sim} =$			
	0,09 % на частоте 1 кГц			
10.6.4	Нагрузка коаксиальная Э9-159, R = 50±0,05 Ом.			
10.6.5	Ваттметр М3-93:			
	$(0-18)$ ГГц, $0,1$ мВт -1 Вт, $\delta P = \pm 4\%$ до 12 ГГц			
10.6.7	Измеритель нелинейных искажений С6-12:			
	F= 10 Γιι – 199,9 κΓιι, Δ_{Kr} =±(0,06×Kr+0,05)%;			
10.6.7	Анализатор спектра HP 8596E: F= 9 кГц – 12,8 ГГц;			
	динамический диапазон +30dB – (-112)dB,			
	уровень интермодуляционных искажений 2 порядка <70 дБн			
10.6.9	Генератор импульсов Г5-60: $T = 0,1$ мкс -10 с, $\Delta T = \pm 10^{-6}$ Т			
10.6.9	Генератор сигналов высокочастотный Г4-176:			
	$F = (0,1 - 1020)$ MΓ μ , $\delta f = \pm 1,5 \times 10^{-7}$			

10.3 Условия поверки

При проведении поверки должны соблюдаться следующие требования ГОСТ 8.395-80:

- температура окружающей среды 20±5°C;
- относительная влажность воздуха 65±15%;
- атмосферное давление 100±4 кПа

10.4 Требования к квалификации поверителей

К проведению поверки могут быть допущены лица, имеющие высшее образование, практический опыт работы в области радиотехнических измерений не менее одного года и квалификацию поверителя.

10.5 Подготовка к поверке

- 10.5.1 Поверитель должен изучить руководства по эксплуатации поверяемого прибора и используемых при поверке средств измерений
- 10.5.2 Перед включением приборов должно быть проверено выполнение требований безопасности
- 10.5.3 Определение метрологических характеристик поверяемого прибора должно производиться по истечении времени установления рабочего режима, равного 30 мин.

10.6 Проведение поверки

10.6.1 Внешний осмотр

При проведении внешнего осмотра необходимо проверить:

- сохранность пломб;
- комплектность согласно РЭ;
- отсутствие внешних механических повреждений, влияющих на точность показаний прибора;
- прочность крепления органов управления, четкость фиксации их положений;
- наличие предохранителей;
- чистоту разъемов и гнезд;
- состояние лакокрасочных покрытий, гальванических покрытий и четкость гравировки.

Приборы, имеющие дефекты, бракуются и направляются в ремонт.

10.6.2 Опробование проводят прямым измерением амплитуды и частоты сигналов синусоидальной, прямоугольной и треугольной формы на выходе генератора.

Основной выход генератора подключают к входу осциллографа HP 54645D через нагрузку 50 Ом. На осциллографе устанавливают коэффициент отклонения 2 В/дел, коэффициент развертки 500 мкс/дел. На генераторе последовательно устанавливают сигналы синусоидальной, прямоугольной и треугольной формы амплитудой 10 В, частотой 1 кГц. Измеряют амплитуду и период сигналов по экрану осциллографа.

На экране осциллографа должны наблюдаться сигналы синусоидальной, прямоугольной и треугольной формы без видимых искажений, размах амплитуды сигналов должен составлять 5 делений шкалы осциллографа по вертикали, а период 2 деления по горизонтали. В противном случае генератор бракуют и направляют в ремонт.

10.6.3 Определение абсолютной погрешности установки частоты проводят методом прямых измерений с помощью частотомера Ч3-64, работающего от внешнего источника опорной частоты - стандарта Ч1-81.

Основной выход генератора подключают к входу А частотомера. На частотомере устанавливают: режим измерения периода по входу А; входное сопротивление частотомера 50 Ом; переключатель X1/X10 в положение X1; вход открытый. Переключатель ВНУТ/ВНЕШ на задней панели частотомера устанавливают в положение ВНЕШ. На вход 5 МГц подают опорный сигнал частотой 5 МГц со стандарта частоты Ч1-81.

Генератор устанавливают в режим генерации сигнала прямоугольной формы, коэффициент заполнения 1 %, амплитудное значение напряжения 1 В. Проводят измерения периода сигнала Тч на частоте 0,1 Гц. Действительное значение частоты Fд находят по формуле Fд =1/Tд, и записывают в таблицу 10.3.

Таблица 10.3

Модели	F	Fд	Тд
все	0,1 Гц		
	100 кГц		
ГСС-05, ГСС-05/1	5 МГц		
ГСС-10, ГСС-10/1	10 МГц		
ГСС-20, ГСС-20/1	20 МГц		
ГСС-40, ГСС-40/1	40 МГц		
ГСС-80, ГСС-80/1	80 МГц		
ΓCC-120, ΓCC-120/1	120 МГц		

На частотомере устанавливают режим измерения частоты по входу А. Генератор устанавливают в режим генерации синусоидального сигнала. Проводят измерения на частоте 100 кГц и верхней частоте диапазона генератора. Показания частотомера Fд

записывают в таблицу 10.3. Абсолютную погрешность установки частоты определяют по формуле 1:

$$\Delta_{\rm F} = {\rm F} - {\rm F}_{\scriptscriptstyle \rm I} \tag{1}$$

Результаты поверки считаются удовлетворительными, если абсолютная погрешность установки частоты не превышает:

 $\pm (5*10^{-6}*F + 0,000001 \ \Gamma$ ц) для моделей ГСС-05...120 $\pm (5*10^{-7}*F + 0,000001 \ \Gamma$ ц) для моделей ГСС-05/1...120/1.

10.6.4 Погрешность установки уровня сигнала синусоидальной формы на частоте 1 кГц определяют методом прямых измерений с помощью мультиметра Agilent 34401A.

Таблица 10.4

Модели	U	Uд
все	3,16 B	
	1 B	
	316 мВ	
	100 мВ	
	31,6 мВ	
	10 мВ	
	3,16 мВ	
	1 мВ	
	0,36 мВ	

Основной выход генератора через тройник подключают к входу мультиметра и нагрузке Э9-159. На генераторе устанавливают сигнал синусоидальной формы, частоту 1 кГц, среднеквадратические значения напряжения U в соответствии с таблицей 10.4. На мультиметре устанавливают режим измерения напряжения переменного тока, автоматический выбор пределов измерения, снимают показания мультиметра Uд.

Абсолютную погрешность установки опорного уровня сигнала синусоидальной формы определяют по формуле 2:

$$\Delta_{\rm U} = {\rm U} - {\rm U}_{\rm I} \tag{2}$$

Результаты поверки считаются удовлетворительными, если абсолютная погрешность установки опорного уровня сигнала синусоидальной формы не превышает $\pm (0.01*U+0.2)$ мВ.

10.6.5 Неравномерность AЧX сигнала синусоидальной формы определяют методом прямых измерений с помощью измерителя мощности M3-93. Измерения проводят на частотах: $20 \, \Gamma$ ц, $1 \, \mathrm{k}\Gamma$ ц, $100 \, \mathrm{k}\Gamma$ ц, $1 \, \mathrm{M}\Gamma$ ц, $5 \, \mathrm{M}\Gamma$ ц, $10 \, \mathrm{M}\Gamma$ ц, $20 \, \mathrm{M}\Gamma$ ц, $40 \, \mathrm{M}\Gamma$ ц, $80 \, \mathrm{M}\Gamma$ ц, $120 \, \mathrm{M}\Gamma$ ц. К основному выходу генератора подключают калориметрический преобразователь измерителя мощности. На генераторе устанавливают сигнал синусоидальной формы, частотой $1 \, \mathrm{k}\Gamma$ ц среднеквадратического значения напряжения $U = 1 \, \mathrm{B}$ (для генераторов Γ CC-80 и Γ CC-80/1 устанавливают уровень напряжения $10 \, \mathrm{д}$ БмВт). Фиксируют показания ваттметра Po.

Затем измеряют выходную мощность P_f на частотах, указанных в таблице 10.5. Неравномерность AЧX рассчитывают по формуле 3:

$$\Delta_{AYX} = 10*\log(P_f/P_0) [J_B]$$
 (3)

Результаты поверки считаются удовлетворительными, если неравномерность AЧX не превышает: ± 0.5 дБ в диапазоне частот до 5 МГц, ± 1 дБ в диапазоне частот (5 – 120) МГц.

Таблица 10.5

Модели	F	$P_{\rm f}$
все	20 Гц	
	1 кГц	
	100 кГц	
	1 МГц	
	5 МГц	
ГСС-10, ГСС-10/1	10 МГц	
ГСС-20, ГСС-20/1	20 МГц	
ГСС-40, ГСС-40/1	40 МГц	
ГСС-80, ГСС-80/1	80 МГц	
ГСС-120, ГСС-120/1	120 МГц	

10.6.6 Определение абсолютной погрешности установки постоянного смещения осуществляется прямыми измерениями с помощью мультиметра Agilent 34401A. Основной выход генератора подключают к входу мультиметра через нагрузку 50 Ом. На мультиметре устанавливают режим измерения напряжения постоянного тока, автоматический выбор пределов измерения.

На генераторе нажатием кнопок Shift и Arb входят в режим выбора стандартных сигналов, с помощью кнопок \triangleleft \triangleright выбирают показание индикатора 10: Р_DC для установки положительного постоянного смещения, либо 11: N_DC для установки отрицательного постоянного смещения. Устанавливают значения постоянного смещения U_, указанные в таблице 10.6. Снимают показания мультиметра U_д.

Таблица 10.6

U_	U_д
5 B	
3 B	
1 B	
300 мВ	
100 мВ	
30 мВ	
10 мВ	
3 мВ	
1 мВ	
-1 мВ	
-3 мВ	
-10 мВ	
-30 мВ	
-100 мВ	
-300 мВ	
-1 B	
-3 B	
-5 B	

Абсолютную погрешность установки постоянного смещения определяют по формуле 4: $\Delta_{U_-} = U_- - U_- д \tag{4}$

Результаты поверки считаются удовлетворительными, если абсолютная погрешность установки постоянного смещения не превышает $\pm (0.05*U + 1 \text{ MB})$.

10.6.7 Определение относительного уровня гармоник сигнала синусоидальной формы.

В диапазоне частот 20 Гц-200 кГц проводят измерение коэффициента гармоник методом прямых измерений с помощью измерителя нелинейных искажений С6-12.

К основному выходу генератора подключают измеритель C6-12 через нагрузку 50 Ом. На генераторе устанавливают синусоидальную форму сигнала, амплитудное значение напряжения 2 В. Коэффициент гармоник Кг измеряют на частотах выходного сигнала 20 Гц; 1; 10; 100 кГц.

В диапазоне частот (0,2-120) МГц производят измерения уровня второй и третьей гармоники с помощью анализатора спектра НР 8596Е. Измерения проводят на частотах 200 кГц, 500 кГц, 1 МГц, 5МГц, 10 МГц, 20 МГц, 40 МГц, 80 МГц, 120 МГц в соответствии с таблицей 10.7. К основному выходу генератора, через аттенюатор Д2-31 подключают анализатор спектра НР 8596Е. На генераторе устанавливают синусоидальную форму сигнала, одну из указанных частот и амплитудное значение напряжения 2 В.

Таблица 10.7

Модели	F	Кг	U ₍₂₎ , дБн	U ₍₃₎ , дБн
все	20 Гц			
	1 кГц			
	10 кГц		-	-
	100 кГц			
	200 кГц			
	500 кГц			
	1 МГц			
	5 МГц			
ГСС-10, ГСС-10/1	10 МГц	-		
ГСС-20, ГСС-20/1	20 МГц			
ГСС-40, ГСС-40/1	40 МГц			
ГСС-80, ГСС-80/1	80 МГц			
ГСС-120, ГСС-120/1	120 МГц			

На анализаторе устанавливают следующие режимы:

Frequency - частота, установленная на генераторе

Span, 50 kHz

Amplitude, 5 dBm, Scale Log

BW, RBW Man, 1 kHz VBW Manu, 100 kHz

Peak Search, Marker, Delta

На анализаторе устанавливают частоту второй гармоники и считывают показания маркера по уровню $U_{(2)}$, затем устанавливают частоту третьей гармоники и считывают показания маркера $U_{(3)}$. Аналогично проводят измерения для остальных частот.

Результаты поверки считаются удовлетворительными, если: значения коэффициента гармоник не превышают 0,45 % в диапазоне частот от 20 Γ ц до 100 к Γ ц; уровни второй и третей гармоники меньше относительно уровня первой гармоники на: -50 дБн в диапазоне частот несущей до 5 М Γ ц, - 45 дБн в диапазоне частот несущей (5 – 10) М Γ ц, - 40 дБн в диапазоне частот несущей (10 – 20) М Γ ц, - 35 дБн в диапазоне частот несущей (20 – 40) М Γ ц и – 25 дБн в диапазоне частот несущей (40 – 120) М Γ ц.

10.6.8 Определение длительностей фронта и среза сигнала прямоугольной формы и сигнала типа меандр осуществляют с помощью осциллографа Agilent 54645D. Сигнал амплитудой 2 В с основного выхода генератора подается через нагрузку 50 Ом на вход осциллографа. Параметры сигнала прямоугольной формы определяют при коэффициенте заполнения 50 %.

Коэффициент отклонения осциллографа устанавливается 0,5 В/дел. При измерении фронта запуск осциллографа осуществляют по фронту импульса (Edge ↑), при измерении среза — по срезу (Edge ↓). Длительность фронта и среза определяют в режиме автоматических измерений временных параметров осциллографа. Измерения проводятся на частотах:

- 1 кГц и 100 кГц при измерении параметров сигнала прямоугольной формы;
- 1 кГц и 5 МГц для генераторов ГСС-05, ГСС-05/1, 10 МГц для генераторов ГСС-10, ГСС-10/1, 20 МГц для генераторов ГСС-20, ГСС-20/1, 40 МГц для генераторов ГСС-40...120, ГСС-40/1...120/1 при измерении параметров сигнала типа меандр.

Результаты поверки считаются удовлетворительными, если длительность фронта и среза сигнала прямоугольной формы не превышает 100 нс, длительность фронта и среза сигнала типа меандр не превышает 25 нс для генераторов $\Gamma CC-05/1...10/1$ и 15 нс для генераторов $\Gamma CC-20...120$, $\Gamma CC-20/1...120/1$.

10.6.9 Определение погрешности измерения частоты и чувствительности генератора в режиме частотомера проводится одновременно. Измерения проводят на частотах 1 Гц и 10 Гц с помощью генератора Г5-60 и частотомера Ч3-64; 50 МГц и 100 МГц с помощью генератора Г4-176. Частотомер Ч3-64 и генератор Г4-176 устанавливают в режим внешнего источника опорной частоты от стандарта Ч1-81.

Поверяемый генератор переводят в режим частотомера путём нажатия кнопок Shift и Sweep.

На генераторе Г5-60 устанавливают амплитуду положительных импульсов 100 мВ при периоде следования сигнала 1000 мс и 50 мВ при периоде следования сигнала 100 мс, длительность импульсов такую, чтобы скважность сигнала была равна 2. Выход генератора Г5-60 через тройник подключают к входу частотомера Ч3-64 и входу Меаs Freq поверяемого генератора. На частотомере устанавливают: режим измерения периода по входу А; входное сопротивление частотомера 50 Ом; переключатель X1/X10 в положение X1; вход открытый Проводят измерения частоты следования импульсов на выходе Г5-60 по частотомеру Ч3-64 и по встроенному частотомеру поверяемого генератора.

При работе с Г4-176 устанавливают уровень сигнала - 26 дБВ (соответствует 50 мВ на выходе генератора на нагрузке 50 Ом) на частоте 50 МГц и - 20 дБВ (100 мВ) на частоте 100 МГц. Г4-176 устанавливают в режим внешнего источника опорной частоты. На вход 5 МГц генератора Г4-176 подают опорный сигнал частотой 5 МГц со стандарта частоты Ч1-81. Выход генератора Г4-176 через нагрузку 50 Ом подключают к входу Меаs Freq поверяемого генератора. Проводят измерения частоты по встроенному частотомеру.

Абсолютную погрешность измерения частоты определяют по формуле 5:

$$\Delta_{\rm f} = f - f \, \, \Pi \tag{5}$$

где: f – частота, измеренная частотомером поверяемого генератора.

 $f_{\rm Z}$ - частота измеренная по Ч3-64 на выходе генератора Γ 5-60, частота установленная на Γ 4-176.

Результаты поверки считаются удовлетворительными, если абсолютная погрешность измерения частоты не превышает: \pm ($5\times10^{-6}*f+1$ знак младшего разряда) для генераторов ГСС-05...120 и \pm ($5\times10^{-7}*f+1$ знак младшего разряда) для генераторов ГСС-5/1...120/1.

1.7 Оформление результатов поверки

- 10.7.1 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы.
- 10.7.2 При положительных результатах поверки на прибор выдается "Свидетельство о поверке" установленного образца.

10.7.3 При отрицательных результатах поверки на прибор выдается "Извещение о непригодности" установленного образца с указанием причин непригодности.