

ОБЛАСТЬ АККРЕДИТАЦИИ

ЮРИДИЧЕСКОЕ ЛИЦО, ИНДИВИДУАЛЬНЫЙ ПРЕДПРИНИМАТЕЛЬ, ВЫПОЛНЯЮЩИЙ РАБОТЫ И(ИЛИ) ОКАЗЫВАЮЩИЙ УСЛУГИ В ОБЛАСТИ ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

АКЦИОНЕРНОЕ ОБЩЕСТВО "ПРИБОРЫ, СЕРВИС, ТОРГОВЛЯ"

наименование

RA.RU.312058

Номер в реестре аккредитованных лиц

1. 111141, РОССИЯ, Город Москва, улица Плеханова, дом 15А.

адреса мест осуществления деятельности

На соответствие требованиям

102-ФЗ Об обеспечении единства измерений. 102-ФЗ

наименование и реквизиты межгосударственного или национального стандарта

111141, РОССИЯ, Город Москва, улица Плеханова, дом 15А.

адреса мест осуществления деятельности

			Метрологические требования		
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
2. Повер	ка средств измерен	ий (ВЛП)			
2.1.	Измерения физико- химического состава и свойств веществ;	Измерители влажности воздуха, в том числе термогигрометры;	(0100) %	Погрешность: ПГ ±2,5 %, абс.;	-

			Метрологическ	ие требования	
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
2.2.	Теплофизические и температурные измерения;	Измерители температуры контактные, в том числе термогигрометры;	(-40170)°C	Погрешность: ПГ ±0,5 °C, абс.;	-
2.3.	Теплофизические и температурные измерения;	Измерители температуры бесконтактные, в том числе тепловизоры и пирометры;	(-401100)°C	Погрешность: ПГ ±1,2 °C, абс.;	-
2.4.	Измерения времени и частоты;	Источники временных сдвигов;	1 нс1000 с	Погрешность: ПГ ±50 пс, абс.;	-
2.5.	Измерения времени и частоты;	Измерители временных интервалов;	1 нс1000 с	Погрешность: ПГ ±300 пс, абс.;	-
2.6.	Измерения времени и частоты;	Меры частоты; Стандарты частоты;	1 кГц200 МГц	Погрешность: ПГ $\pm 5 \cdot 10^{-12}$, отн.;	за 12 мес.

			Метролог	ические требования	
Ν Π/Π	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
2.7.	Измерения времени и частоты;	Делители частоты; Умножители частоты;	1 мкГц67 ГГц	Погрешность: ПГ $\pm 5 \cdot 10^{-10}$, отн. ;	за 12 мес.
2.8.	Измерения времени и частоты;	Генераторы прецизионные кварцевые и рубидиевые;	1 кГц2 ГГц	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн.;	за 12 мес.
2.9.	Измерения времени и частоты;	Синтезаторы частоты;	1 мкГц67 ГГц	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн.;	за 12 мес.
2.10.	Измерения времени и частоты;	Компараторы частоты;	1 кГц200 МГц	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн.;	за 12 мес.
2.11.	Измерения времени и частоты;	Преобразователи частоты;	1 мкГц67 ГГц	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-10}$, отн.;	за 12 мес.
2.12.	Измерения времени и частоты;	Генераторы сигналов;	1 мкГц67 ГГц	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн.;	за 12 мес.

RA.RU.312058

на 41 листах, лист 4

		Тип (группа) средств измерений	Метрологическ	кие требования	
Ν П/П	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
		Генераторы сигналов низкочастотные; Генераторы сигналов высокочастотные; Генераторы сигналов сложной формы;			
2.13.	Измерения времени и частоты;	Частотомеры; Частотомеры электронно- счетные;	1 мкГц67 ГГц	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн.;	за 12 мес.
2.14.	Измерения электротехнических и магнитных величин;	Вольтметры универсальные, мультиметры, приборы комбинированные;	10 В 0,1 В; 1 В; 100 В; 1000 В 0,01018 В напряжение постоянного тока (-220220) мВ (-2,22,2) В (-2222) В (-220220) В (-11001100) В	Погрешность: $\Pi\Gamma \pm 0,00018$ %, отн. $\Pi\Gamma \pm 0,00028$ %, отн. $\Pi\Gamma \pm 0,0003$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,00035$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,00065$ %, отн. $\Pi\Gamma \pm 0,00065$ %, отн.	фиксированные напряжения
			напряжение переменного тока 1 мкВ2,2 мВ (120) Гц (2040) Гц 40 Гц20 кГц (2050) кГц	$\Pi\Gamma \pm 0,024$ %, отн. $\Pi\Gamma \pm 0,009$ %, отн. $\Pi\Gamma \pm 0,008$ %, отн. $\Pi\Gamma \pm 0,02$ %, отн.	

			Метролог	ические требования	
ι п/п	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
•		<u> </u>	(50100) κΓι (100300) κΓι (300500) κΓι (0,51) ΜΓι	ПГ ±0,05 %, отн. ПГ ±0,105 %, отн. ПГ ±0,14 %, отн. ПГ ±0,27 %, отн.	
			(2,222) MB (120) Γ μ (2040) Γ μ (40100) Γ μ (0,11) κΓ μ (110) κΓ μ (1020) κΓ μ (2050) κΓ μ (50100) κΓ μ (100300) κΓ μ (300500) κΓ μ (0,51) ΜΓ μ	$\Pi\Gamma \pm 0,024$ %, отн. $\Pi\Gamma \pm 0,009$ %, отн. $\Pi\Gamma \pm 0,008$ %, отн. $\Pi\Gamma \pm 0,005$ %, отн.	
			(22220) MB (120) Γι (2040) Γι (40100) Γι (0,11) κΓι (110) κΓι (1020) κΓι (2050) κΓι (50100) κΓι (100300) κΓι (300500) κΓι (0,51) ΜΓι 1 ΜΓι	$\Pi\Gamma \pm 0,09$ %, отн. $\Pi\Gamma \pm 0,03$ %, отн. $\Pi\Gamma \pm 0,006$ %, отн. $\Pi\Gamma \pm 0,008$ %, отн. $\Pi\Gamma \pm 0,011$ %, отн. $\Pi\Gamma \pm 0,03$ %, отн. $\Pi\Gamma \pm 0,03$ %, отн. $\Pi\Gamma \pm 0,075$ %, отн. $\Pi\Gamma \pm 0,15$ %, отн.	
			(220700) MB (120) Γц (2040) Γц (40100) Γц (0,11) κΓц (110) κΓц	$\Pi\Gamma \pm 0.03$ %, отн. $\Pi\Gamma \pm 0.0065$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.0025$ %, отн.	

			Метрологические требования		
1/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(1020) κΓιμ	$\Pi\Gamma \pm 0{,}0045 \%$, oth.	
			(2050) кГц	$\Pi\Gamma \pm 0{,}0055$ %, oth.	
			(50100) кГц	ΠΓ ±0,0075 %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0.015$ %, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.02$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.043$ %, oth.	
			(1 MΓ _Ψ	$\Pi\Gamma \pm 0,055$ %, отн.	
			(0,72,2) B		
			(120) Гц	$\Pi\Gamma \pm 0.06$ %, oth.	
			(2040) Гц	$\Pi\Gamma \pm 0.015$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0{,}003$ %, отн.	
			(0,11) кГц	$\Pi\Gamma \pm 0{,}003$ %, отн.	
			(110) кГц	$\Pi\Gamma \pm 0{,}0025$ %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0,0045$ %, oth.	
			(2050) кГц	$\Pi\Gamma \pm 0,0055$ %, oth.	
			(50100) кГц	ΠΓ ±0,0075 %, отн.	
			(100300) кГц	$\Pi\Gamma \pm 0.015$ %, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.02$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.045 \%$, oth.	
			1 МГц	$\Pi\Gamma \pm 0{,}053$ %, отн.	
			(2,27) B	HE 10.02.07	
			(120) Гц	$\Pi\Gamma \pm 0.03\%$, oth.	
			(2040) Гц	ПГ ±0,0065 %, отн.	
			(40100) Гц	$\Pi\Gamma \pm 0{,}003$ %, отн. $\Pi\Gamma \pm 0{,}003$ %, отн.	
			(0,11) кГц (1, 10) гГч		
			(110) κΓιι (1020) κΓιι	ПГ ±0,0025 %, отн.	
			(1020) кГц (2050) кГц	$\Pi\Gamma \pm 0.0045$ %, отн. $\Pi\Gamma \pm 0.0055$ %, отн.	
			(2030) κΓ μ (50100) κΓ μ	$\Pi\Gamma \pm 0,0055\%$, oth. $\Pi\Gamma \pm 0,0075\%$, oth.	
			(30100) кГц	ПГ ±0,0075 %, 01Н. ПГ ±0,015 %, отн.	
			(300500) кГ ц	$\Pi\Gamma \pm 0.015$ %, OTH. $\Pi\Gamma \pm 0.02$ %, OTH.	
			(0,51) МГц	ПГ ±0,046 %, отн.	
			1 МГц	ПГ ±0,059 %, отн.	
			(722) B		
			(120) Гц	ΠΓ ±0.06 %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0.015$ %, oth.	

			Метрологические требования		
N П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
<u> </u>		•	(40100) Γ _Ι (0,11) κΓ _Ι (110) κΓ _Ι (1020) κΓ _Ι (2050) κΓ _Ι (50100) κΓ _Ι (100300) κΓ _Ι 300 κΓ _Ι	$\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0025$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,02$ %, отн.	
			(2270) B (120) Γμ (2040) Γμ (40100) Γμ (0,11) κΓμ (110) κΓμ (1020) κΓμ (2050) κΓμ (50100) κΓμ	$\Pi\Gamma \pm 0,03$ %, отн. $\Pi\Gamma \pm 0,007$ %, отн. $\Pi\Gamma \pm 0,004$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	
			(70220) B (120) Γι (2040) Γι (40100) Γι (0,11) κΓι (110) κΓι (1020) κΓι (2050) κΓι (50100) κΓι 100 κΓι	$\Pi\Gamma \pm 0,06$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	
			2201000 B (1100) Γμ (0,11) κΓμ (110) κΓμ (1020) κΓμ (2050) κΓμ (50100) κΓμ	$\Pi\Gamma \pm 0,006$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0027$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	

		Tup (======)	Метрологические требования		
Ν Π/Π	Измерения	Тип (группа) вмерения средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			сила постоянного тока (-1010) нА (-100100) нА (-11) мкА (-1010) мкА (-100100) мкА (-22022) мкА (-22022) мА (-2222) мА (-2222) мА (-2222) мА (-111) А (-100100) А	$\Pi\Gamma \pm 0,07 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,03 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,007 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,007 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,007 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,004 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,0035 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,0035 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,0035 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,0045 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,008 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,005 \%, \text{ oth.}$ $\Pi\Gamma \pm 0,015 \%, \text{ oth.}$	
			сила переменного тока (110) мкА 1 Гц30 кГц (10100) мкА 1 Гц2 кГц (210) кГц (1030) кГц (30100) кГц	$\Pi\Gamma$ ±0,3%, отн. $\Pi\Gamma$ ±0,043 %, отн. $\Pi\Gamma$ ±0,075 %, отн. $\Pi\Gamma$ ±0,10 %, отн. $\Pi\Gamma$ ±0,55 %, отн.	
			100 mkA1 mA 1 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ (30100) κΓ μ	$\Pi\Gamma \pm 0{,}0055$ %, отн. $\Pi\Gamma \pm 0{,}0075$ %, отн. $\Pi\Gamma \pm 0{,}0075$ %, отн. $\Pi\Gamma \pm 0{,}015$ %, отн.	
			(110) MA 1 Γη1 κΓη (110) κΓη (1030) κΓη (30100) κΓη	$\Pi\Gamma \pm 0,0026$ %, отн.	

		1	Метролог	Метрологические требования	
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
		<u> </u>	1 Гц1 кГц	$\Pi\Gamma$ ±0,0026 %, отн.	
			(110) кГц	ΠΓ ±0,0026 %, отн.	
			(1030) кГц	ΠΓ ±0,0026 %, oth.	
			(30100) кГц	$\Pi\Gamma \pm 0{,}0026$ %, отн.	
			100 мА1 А		
			1 Гц1 кГц	$\Pi\Gamma \pm 0{,}0027$ %, отн.	
			(110) кГц	ΠΓ ±0,0028 %, отн.	
			(1030) кГц	$\Pi\Gamma \pm 0,0028$ %, oth.	
			(30100) кГц	$\Pi\Gamma \pm 0,0031$ %, oth.	
			(110) A		
			1 Гц1 кГц	ΠΓ ±0,0037 %, отн.	
			(110) кГц	ΠΓ ±0,006 %, отн.	
			(1030) кГц	ΠΓ ±0,0061 %, отн.	
			(30100) кГц	$\Pi\Gamma \pm 0,0092$ %, отн.	
			(10100) A		
			10 Гц1 кГц	$\Pi\Gamma \pm 0,0065$ %, отн.	
			(110) кГц	$\Pi\Gamma \pm 0,009$ %, oth.	
			(1030) кГц	$\Pi\Gamma \pm 0{,}0098 \%$, oth.	
			(30100) кГц	Π Γ ±0,0174 %, отн.	
			электрическое сопротивление		
			100 мкОм	$\Pi\Gamma \pm 0.025$ %, отн.	
			(100500) мкОм	$\Pi\Gamma \pm 0.02$ %, отн.	
			500 мкОм1мОм	$\Pi\Gamma \pm 0.012$, oth.	
			1 mOm0,1 Om	ПГ ±0,0003 %, отн.	
			(0,110) Ом 10 Ом1 кОм	$\Pi\Gamma \pm 0,0008$ %, отн. $\Pi\Gamma \pm 0,0006$ %, отн.	
			(1 кОм 19) кОм	$\Pi\Gamma \pm 0,0004$ %, oth. $\Pi\Gamma \pm 0,0004$ %, oth.	
			(19 kOm 100) kOm	ПГ ±0,0006 %, отн.	
			100 кОм1 МОм	$\Pi\Gamma \pm 0{,}0008$ %, oth.	
			(110) МОм	$\Pi\Gamma \pm 0,0009$ %, oth.	
			(1019) МОм	$\Pi\Gamma \pm 0{,}001$ %, oth.	
			(19100) МОм	$\Pi\Gamma \pm 0.005 \%$, oth.	
			(0,11) ГОм 2 ГОм1,9 ТОм	$\Pi\Gamma \pm 0.01$ %, отн. $\Pi\Gamma \pm 1$ %, отн.	
			4 I UM1,7 I UM	111 ±1 /0, U1H.	

			Метрологи	ические требования	
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			электрическая емкость (104000) пФ (0,011) мкФ (132,9999) мкФ 33 мкФ10,9999 мФ (1132,9999) мФ (33110) мФ индуктивность	$\Pi\Gamma \pm 0.02$ %, отн. $\Pi\Gamma \pm 0.03$ %, отн. $\Pi\Gamma \pm 0.4$ %, отн. $\Pi\Gamma \pm 0.45$ %, отн. $\Pi\Gamma \pm 0.75$ %, отн. $\Pi\Gamma \pm 1.1$ %, отн. $\Pi\Gamma \pm 1.1$ %, отн.	
			(15) мкГн (550) мкГн (0,0501000) мГн частота 0,001 Гц200 МГц	$\Pi\Gamma \pm 1,5$ %, отн. $\Pi\Gamma \pm 0,15$ %, отн. $\Pi\Gamma \pm 0,05$ %, отн. $\Pi\Gamma \pm 1\cdot 10^{-7}$, отн.	
			температура (термо ЭДС или термосопротивление) (-2502320) °C	ΠΓ ±0,7 °C;	
2.15.	Измерения электротехнических и магнитных величин;	Источники- измерители;	10 B 0,1 B; 1 B; 100 B; 1000 B 0,01018 B	Погрешность: $\Pi\Gamma \pm 0,00018 \text{ %, отн.} \\ \Pi\Gamma \pm 0,00028 \text{ %, отн.} \\ \Pi\Gamma \pm 0,0003 \text{ %, oth.} \\ $	фиксированные напряжения
			напряжение постоянного тока (-220220) мВ (-2,22,2) В (-2222) В (-220220) В (-11001100) В	$\Pi\Gamma \pm 0,00075$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,00035$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,00065$ %, отн. $\Pi\Gamma \pm 0,00065$ %, отн.	
			напряжение переменного тока 1 мкВ2,2 мВ (120) Гц (2040) Гц	$\Pi\Gamma \pm 0.024$ %, отн. $\Pi\Gamma \pm 0.009$ %, отн.	на 41 пистах пист 11

			Метрологические требования		
п/п	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			40 Гц20 кГц	$\Pi\Gamma \pm 0{,}008$ %, oth.	
			(2050) кГц	$\Pi\Gamma \pm 0.02$ %, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0.05$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0{,}105 \%$, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.14$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0,27$ %, oth.	
			(2,222) мВ		
			(120) Гц	$\Pi\Gamma \pm 0.024$ %, oth.	
			(2040) Гц	$\Pi\Gamma \pm 0{,}009$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0.008 \%$, oth.	
			(0,11) кГц	ПГ ±0,008 %, отн.	
			(110) кГц	ПГ ±0,008 %, отн.	
			(1020) κΓιι (2050) κΓιι	$\Pi\Gamma \pm 0{,}008$ %, отн. $\Pi\Gamma \pm 0{,}02$ %, отн.	
			(2030) κΓ μ (50100) κΓ μ	$\Pi\Gamma \pm 0.02\%$, oth. $\Pi\Gamma \pm 0.05\%$, oth.	
			(30100) кГц	ПГ ±0,105 %, отн.	
			(300500) кГц	$\Pi\Gamma \pm 0,103$ %, OTH. $\Pi\Gamma \pm 0,14$ %, OTH.	
			(0,51) МГц	$\Pi\Gamma \pm 0,27\%$, oth.	
			1 МГц	ПГ ±0,27 %, отн.	
			(22220) мВ		
			(120) Гц	$\Pi\Gamma \pm 0.09$ %, oth.	
			(2040) Гц	$\Pi\Gamma \pm 0.03$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0{,}006$ %, oth.	
			(0,11) кГц	$\Pi\Gamma \pm 0{,}006$ %, oth.	
			(110) кГц	$\Pi\Gamma \pm 0{,}006$ %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0{,}006$ %, oth.	
			(2050) кГц	$\Pi\Gamma \pm 0{,}008$ %, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0.011$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0.03$ %, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.075$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.15$ %, oth.	
			1 МГц	$\Pi\Gamma$ ±0,25 %, отн.	
			(220700) мВ		
			(120) Гц	ΠΓ ±0.03 %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0,0065$ %, oth.	
			(=vv) + H	111 -0,0000 /0,01111	

			Метрологические требования		
N П/П	Измерения	измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(0,11) κΓιι (1, 10) τΓτ	ПГ ±0,003 %, отн.	
			(110) кГц (1020) кГц	$\Pi\Gamma \pm 0,0025$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн.	
			(1020) кг ц (2050) кГц	ПГ ±0,0055 %, отн.	
			(50100) кГц	$\Pi\Gamma \pm 0,0075$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0.015$ %, oth.	
			(300500) кГц	ΠΓ ±0.02 %, отн.	
			(0,51) МГц	ΠΓ ±0,043 %, отн.	
			(1 МГц	ΠΓ ±0,055 %, отн.	
			(0,72,2) B		
			(120) Гц	$\Pi\Gamma \pm 0.06$ %, отн.	
			(2040) Гц	ΠΓ ±0,015 %, отн.	
			(40100) Гц	$\Pi\Gamma \pm 0{,}003$ %, oth.	
			(0,11) кГц	$\Pi\Gamma \pm 0.003$ %, oth.	
			(110) κΓιι (1020) «Ε	ΠΓ ±0,0025 %, отн.	
			(1020) кГц (2050) кГц	$\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн.	
			(2030) κΓ μ (50100) κΓ μ	ПГ ±0,0075 %, отн.	
			(100300) кГц	$\Pi\Gamma \pm 0,015\%$, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.02$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.045$ %, oth.	
			1 МГц	ΠΓ ±0,053 %, отн.	
			(2,27) B		
			(120) Гц	ΠΓ ±0,03 %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0,0065$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0,003$ %, oth.	
			(0,11) кГц	$\Pi\Gamma \pm 0{,}003$ %, oth.	
			(110) кГц	$\Pi\Gamma \pm 0.0025$ %, oth.	
			(1020) кГц	ПГ ±0,0045 %, отн.	
			(2050) κΓιι (50100) κΓιι	$\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн.	
			(50100) κΓιι (100300) κΓιι	ПГ ±0,0075 %, отн. ПГ ±0,015 %, отн.	
			(100500) кГ ц (300500) кГц	ПГ ±0,013 %, ОТН. ПГ ±0,02 %, ОТН.	
			(300300) кг ц	ПГ ±0,046 %, отн.	
			(0,5т) ни ц 1 МГц	ПГ ±0,059 %, отн.	
			(722) B		

			Метролог	ические требования	
Ν Π/Π	Измерения	Тип (группа) ния средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(120) Γ μ (2040) Γ μ (40100) Γ μ (0,11) κΓ μ (110) κΓ μ (1020) κΓ μ (2050) κΓ μ (50100) κΓ μ	$\Pi\Gamma \pm 0,06$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0025$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн.	
			(100300) κΓ μ 300 κΓ μ (2270) Β (120) Γ μ (2040) Γ μ (40100) Γ μ (0,11) κΓ μ (110) κΓ μ (1020) κΓ μ (2050) κΓ μ (50100) κΓ μ	$\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,02$ %, отн. $\Pi\Gamma \pm 0,02$ %, отн. $\Pi\Gamma \pm 0,007$ %, отн. $\Pi\Gamma \pm 0,004$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	
			(70220) B (120) Γι (2040) Γι (40100) Γι (0,11) κΓι (110) κΓι (1020) κΓι (2050) κΓι (50100) κΓι 100 κΓι	$\Pi\Gamma \pm 0.06$ %, отн. $\Pi\Gamma \pm 0.015$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.0045$ %, отн. $\Pi\Gamma \pm 0.0055$ %, отн. $\Pi\Gamma \pm 0.0055$ %, отн. $\Pi\Gamma \pm 0.0075$ %, отн. $\Pi\Gamma \pm 0.0075$ %, отн. $\Pi\Gamma \pm 0.015$ %, отн.	
			2201000 B (1100) Γι (0,11) κΓι (110) κΓι (1020) κΓι (2050) κΓι	$\Pi\Gamma \pm 0,006$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0027$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн.	

			Метролог	гические требования		
Ν Π/Π	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
•		<u>·</u>	(50100) κΓι 100 κΓι	ПГ ±0,0075 %, отн. ПГ ±0,015 %, отн.		
			сила постоянного тока (-1010) нА (-100100) нА (-11) мкА (-1010) мкА (-100100) мкА (-220220) мкА (-2222) мА (-2222) мА (-2222) мА (-1111) А (-100100) А	$\Pi\Gamma \pm 0,07$ %, отн. $\Pi\Gamma \pm 0,03$ %, отн. $\Pi\Gamma \pm 0,007$ %, отн. $\Pi\Gamma \pm 0,004$ %, отн. $\Pi\Gamma \pm 0,0035$ %, отн. $\Pi\Gamma \pm 0,0035$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,008$ %, отн. $\Pi\Gamma \pm 0,005$ %, отн. $\Pi\Gamma \pm 0,005$ %, отн. $\Pi\Gamma \pm 0,005$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.		
			сила переменного тока (110) мкА 1 Гц30 кГц (10100) мкА 1 Гц2 кГц (210) кГц (1030) кГц (30100) кГц	$\Pi\Gamma \pm 0,3\%$, отн. $\Pi\Gamma \pm 0,043$ %, отн. $\Pi\Gamma \pm 0,075$ %, отн. $\Pi\Gamma \pm 0,10$ %, отн. $\Pi\Gamma \pm 0,55$ %, отн.		
			100 mkA1 mA 1 Γų1 κΓų (110) κΓų (1030) κΓų (30100) κΓų	ПГ ±0,0055 %, отн. ПГ ±0,0075 %, отн. ПГ ±0,0075 %, отн. ПГ ±0,015 %, отн.		
			(110) MA 1 Γι1 κΓιι (110) κΓιι (1030) κΓιι (30100) κΓιι	ПГ ±0,0026 %, отн. ПГ ±0,0026 %, отн. ПГ ±0,0026 %, отн. ПГ ±0,0026 %, отн.		

			Метрологические требования			
Ν П/П Измер	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
			(40, 400)			
			(10100) мА 1 Гц1 кГц	HE 10.0026 9/ oran		
				$\Pi\Gamma \pm 0,0026$ %, отн. $\Pi\Gamma \pm 0,0026$ %, отн.		
			(110) κΓιι (1030) κΓιι	ПГ ±0,0026 %, отн. ПГ ±0,0026 %, отн.		
			(1030) кГц (30100) кГц	ПГ ±0,0026 %, отн.		
			(30100) кі ц	111 ±0,0020 70, 01H.		
			100 мА1 А			
			1 Гц1 кГц	$\Pi\Gamma \pm 0,0027$ %, oth.		
			(110) кГц	$\Pi\Gamma \pm 0{,}0028$ %, oth.		
			(1030) кГц	$\Pi\Gamma \pm 0{,}0028$ %, отн.		
			(30100) кГц	$\Pi\Gamma \pm 0.0031$ %, oth.		
			(110) A			
			1 Гц1 кГц	$\Pi\Gamma \pm 0,0037$ %, oth.		
			(110) кГц	$\Pi\Gamma \pm 0{,}006\%$, oth.		
			(1030) кГц	$\Pi\Gamma \pm 0{,}0061 \%$, oth.		
			(30100) кГц	$\Pi\Gamma \pm 0{,}0092$ %, отн.		
			(10100) A			
			10 Гц1 кГц	ΠΓ ±0,0065 %, oth.		
			(110) кГц	ПГ ±0,000 %, отн.		
			(1030) кГц	$\Pi\Gamma \pm 0,0098 \%$, oth.		
			(30100) кГц	ПГ ±0,0174 %, отн.		
			электрическое сопротивление	ПЕ +0.025.9/ отт		
			100 мкОм (100500) мкОм	$\Pi\Gamma \pm 0.025$ %, отн. $\Pi\Gamma \pm 0.02$ %, отн.		
			(100500) MROM 500 MKOM1MOM	ПГ ±0,02 %, отн. ПГ ±0,01 %, отн.		
			1 мОм0,1 Ом	ПГ ±0,001 %, 01н. ПГ ±0,0003 %, отн.		
			(0,110) OM	ПГ ±0,0003 %, 01н. ПГ ±0,0008 %, отн.		
			10 Ом1 кОм	ПГ ±0,0006 %, отн.		
			(1 кОм 19) кОм	ПГ ±0,0004 %, отн.		
			(19 кОм 100) кОм	ПГ ±0,0006 %, отн.		
			100 kOm1 MOm	$\Pi\Gamma \pm 0,0008$ %, oth.		
			(110) МОм	ПГ ±0,0009 %, отн.		
			(1019) MOM	ПГ ±0,000 %, отн.		
			(19100) МОм	$\Pi\Gamma \pm 0,005$ %, oth.		
			(0,11) ГОм	$\Pi\Gamma \pm 0.01$ %, oth.		

			Метрологические требования			
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
			2 ГОм1,9 ТОм (1,929) ТОм	ΠΓ ±1 %, οτh. ΠΓ ±5 %, οτh.		
			электрическая емкость (104000) пФ (0,011) мкФ (132,9999) мкФ 33 мкФ10,9999 мФ (1132,9999) мФ (33110) мФ	$\Pi\Gamma \pm 0.02$ %, отн. $\Pi\Gamma \pm 0.03$ %, отн. $\Pi\Gamma \pm 0.4$ %, отн. $\Pi\Gamma \pm 0.45$ %, отн. $\Pi\Gamma \pm 0.75$ %, отн. $\Pi\Gamma \pm 1.1$ %, отн.		
			индуктивность (15) мкГн (550) мкГн (0,0501000) мГн	$\Pi\Gamma \pm 1,5$ %, отн. $\Pi\Gamma \pm 0,15$ %, отн. $\Pi\Gamma \pm 0,05$ %, отн.		
			частота 0,001 Гц200 МГц	$\Pi\Gamma \pm 1\cdot 10^{-7}$, отн.		
			температура (термо ЭДС или термосопротивление) (-2502320) °C	ПГ ±0,7 °С;		
2.16.	Измерения электротехнических и магнитных величин;	Преобразователи напряжения и тока, преобразователи напряжения и тока	10 B 0,1 B; 1 B; 100 B; 1000 B 0,01018 B	Погрешность: $\Pi\Gamma \pm 0,00018 \%, \text{ отн.} \\ \Pi\Gamma \pm 0,00028 \%, \text{ отн.} \\ \Pi\Gamma \pm 0,0003 \%, \text{ отн.} \\ $	фиксированные напряжения	
		измерительные аналого-цифровые и цифро-аналоговые модульные;	напряжение постоянного тока (-220220) мВ (-2,22,2) В (-2222) В (-220220) В (-11001100) В	$\Pi\Gamma \pm 0,00075$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,00035$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,0005$ %, отн. $\Pi\Gamma \pm 0,00065$ %, отн.		
			напряжение переменного тока 1 мкВ2,2 мВ			

			Метролог	гические требования	Примечание
1/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	
			(120) Гц	ПГ ±0,024 %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0{,}009$ %, oth.	
			40 Гц20 кГц	ΠΓ ±0,008 %, отн.	
			(2050) кГц	$\Pi\Gamma \pm 0.02$ %, отн.	
			(50100) кГц	$\Pi\Gamma \pm 0.05$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0,105$ %, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.14$ %, oth.	
			(0,51 МГц	Π Γ ±0,27 %, oth.	
			(2,222) мВ		
			(120) Гц	$\Pi\Gamma \pm 0.024$ %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0{,}009$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0{,}008$ %, oth.	
			(0,11) кГц	$\Pi\Gamma \pm 0{,}008$ %, oth.	
			(110) кГц	ΠΓ ±0,008 %, отн.	
			(1020) кГц	$\Pi\Gamma \pm 0{,}008$ %, oth.	
			(2050) кГц	ΠΓ ±0.02 %, отн.	
			(50100) кГц	$\Pi\Gamma \pm 0.05$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0.105$ %, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.14$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.27\%$, oth.	
			1 МГц	$\Pi\Gamma$ ±0,27 %, oth.	
			(22220) мВ		
			(120) Гц	$\Pi\Gamma \pm 0.09$ %, oth.	
			(2040) Гц	$\Pi\Gamma \pm 0.03$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0.006 \%$, oth.	
			(0,11) кГц	ПГ ±0,006 %, отн.	
			(110) κΓιι (1020) «Ε	ПГ ±0,006 %, отн.	
			(1020) κΓιι (2050) κΓιι	ΠΓ ±0,006 %, отн.	
			(2050) κΓιι (50100) κΓιι	ПГ ±0,008 %, отн.	
			(50100) κΓιι (100300) κΓιι	$\Pi\Gamma \pm 0.011$ %, отн. $\Pi\Gamma \pm 0.03$ %, отн.	
			(100500) кі ц (300500) кГц	ПГ ±0,03 %, ОТН. ПГ ±0,075 %, ОТН.	
			(300300) кг ц (0,51) МГц	$\Pi\Gamma \pm 0.075\%$, oth. $\Pi\Gamma \pm 0.15\%$, oth.	
			(0,3) WI Ц 1 МГц	ΠΓ ±0,25 %, отн.	
			(220700) мВ		
			1 (/ /D / /OO) MB		

			Метрологические требования		
I П/П Измерения	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(2040) Гц	$\Pi\Gamma \pm 0,0065$ %, отн.	
			(40100) Гц	ПГ ±0,003 %, отн.	
			(0,11) кГц	$\Pi\Gamma \pm 0,003$ %, oth.	
			(110) кГц	$ΠΓ \pm 0,0025$ %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0{,}0045$ %, отн.	
			(2050) кГц	$\Pi\Gamma \pm 0,0055$ %, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0{,}0075$ %, отн.	
			(100300) кГц	ΠΓ ±0,015 %, отн.	
			(300500) кГц	$\Pi\Gamma \pm 0.02$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.043$ %, oth.	
			1 МГц	$\Pi\Gamma \pm 0.055$ %, отн.	
			(0,72,2) B		
			(120) Гц	ΠΓ ±0.06 %, отн.	
			(2040) Гц	Π Γ ±0,015 %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0,003$ %, oth.	
			(0,11) кГц	$\Pi\Gamma \pm 0{,}003$ %, oth.	
			(110) кГц	$\Pi\Gamma \pm 0.0025$ %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0.0045$ %, oth.	
			(2050) кГц	ПГ ±0,0055 %, отн.	
			(50100) κΓιι (100300) κΓιι	$\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	
			(300500) кГ ц	ПГ ±0,013 %, 01н. ПГ ±0,02 %, 0тн.	
			(905900) КГЦ (0,51) МГЦ	$\Pi\Gamma \pm 0.045$ %, oth.	
			(0,5т) ИП Ц 1 МГц	ПГ ±0,053 %, отн.	
			(2.2. 7) P		
			(2,27) B (120) Γц	$\Pi\Gamma \pm 0.03$ %, oth.	
			(120) Гц (2040) Гц	$\Pi\Gamma \pm 0,005\%$, oth. $\Pi\Gamma \pm 0,0065\%$, oth.	
			(2040) Гц	ПГ ±0,0003 %, ОТН.	
			(0,11) кГц	$\Pi\Gamma \pm 0,003$ %, oth.	
			(110) кГц	$\Pi\Gamma \pm 0{,}0025$ %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0{,}0045$ %, oth.	
			(2050) кГц	$ΠΓ \pm 0,0055$ %, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0,0075$ %, oth.	
			(100300) кГц	ΠΓ ±0,015 %, отн.	
			(300500) кГц	ΠΓ ±0.02 %, отн.	
			(0,51) МГц	ΠΓ ±0,046 %, oth.	
			1 МГц	Π Γ ±0,059 %, отн.	

			Метрологические требования		
Ν Π/Π	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(722) В (120) Гц	$\Pi\Gamma$ $\pm0,06$ %, отн.	
			(2040) Γιι (40100) Γιι (0,11) κΓιι (110) κΓιι	$\Pi\Gamma \pm 0.015$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.0025$ %, отн.	
			(1020) κΓμ (2050) κΓμ (50100) κΓμ	$\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн.	
			(100300) κΓι 300 κΓι (2270) Β	$\Pi\Gamma$ ±0,015 %, отн. $\Pi\Gamma$ ±0,02 %, отн.	
			(2270) Β (120) Γη (2040) Γη (40100) Γη	$\Pi\Gamma \pm 0.03$ %, отн. $\Pi\Gamma \pm 0.007$ %, отн. $\Pi\Gamma \pm 0.004$ %, отн.	
			(0,11) κΓη (110) κΓη (1020) κΓη (20500) κΓη	$\Pi\Gamma \pm 0,004$ %, отн. $\Pi\Gamma \pm 0,004$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн.	
			(50100) κΓц 100 κΓц	$\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	
			(70220) B (120) Γц (2040) Γц (40100) Γц (0,11) κΓц	$\Pi\Gamma \pm 0.06$ %, отн. $\Pi\Gamma \pm 0.015$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн. $\Pi\Gamma \pm 0.003$ %, отн.	
			(110) κΓιι (1020) κΓιι (2050) κΓιι (50100) κΓιι	$\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн.	
			100 кГц (2201000) В	$\Pi\Gamma \pm 0.015$ %, отн.	
			(1 Γц100) Γц (0,11) κΓц (110) κΓц	$\Pi\Gamma \pm 0,006$ %, отн. $\Pi\Gamma \pm 0,003$ %, отн. $\Pi\Gamma \pm 0,0027$ %, отн.	

			Метролог	ические требования		
1 П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
<u> </u>			(1020) κΓη (2050) κΓη (50100) κΓη 100 κΓη	$\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.		
			сила постоянного тока (-1010) нА (-100100) нА (-11) мкА (-1010) мкА (-100100) мкА (-220220) мкА (-222.2) мА (-2222) мА (-2222) мА (-2222) мА (-1111) А (-100100) А	$\Pi\Gamma \pm 0,07 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,03 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,0002 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,0002 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,002 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,004 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,0035 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,0035 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,0035 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,0045 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,008 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,005 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,015 \%, \text{ отн.}$ $\Pi\Gamma \pm 0,015 \%, \text{ отн.}$		
			сила переменного тока (110) мкА 1 Гц30 кГц (10100) мкА	$\Pi\Gamma$ ±0,3%, отн.		
			1 Γη2 κΓη (210) κΓη (1030) κΓη (30100) κΓη	$\Pi\Gamma \pm 0,043$ %, отн. $\Pi\Gamma \pm 0,075$ %, отн. $\Pi\Gamma \pm 0,10$ %, отн. $\Pi\Gamma \pm 0,55$ %, отн.		
			100 mkA1 mA 1 Γц1 κΓц (110) κΓц (1030) κΓц (30100) κΓц	$\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.		
			(110) MA 1 Γι1 κΓιι (110) κΓιι (1030) κΓιι	$\Pi\Gamma \pm 0,0026$ %, отн. $\Pi\Gamma \pm 0,0026$ %, отн. $\Pi\Gamma \pm 0,0026$ %, отн.		

			Метрологические требования			
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
'	<u>'</u>		(30100) кГц	ПГ ±0,0026 %, отн.		
			(10100) MA 1 Γι1 κΓι (110) κΓι (1030) κΓι (30100) κΓι 100 MA1 A 1 Γι1 κΓι	$\Pi\Gamma \pm 0,0026$ %, отн.		
			(110) κΓμ (1030) κΓμ (30100) κΓμ	$\Pi\Gamma \pm 0{,}0028$ %, отн. $\Pi\Gamma \pm 0{,}0028$ %, отн. $\Pi\Gamma \pm 0{,}0031$ %, отн.		
			(110) A 1 Γι1 κΓι (110) κΓι (1030) κΓι (30100) κΓι	$\Pi\Gamma \pm 0,0037$ %, отн. $\Pi\Gamma \pm 0,006$ %, отн. $\Pi\Gamma \pm 0,0061$ %, отн. $\Pi\Gamma \pm 0,0092$ %, отн.		
			(10100) A 10 Γц1 κΓц (110) κΓц (1030) κΓц (30100) κΓц	$\Pi\Gamma \pm 0,0065$ %, отн. $\Pi\Gamma \pm 0,009$ %, отн. $\Pi\Gamma \pm 0,0098$ %, отн. $\Pi\Gamma \pm 0,0174$ %, отн.;		
2.17. Из	змерения	Амперметры;	сила постоянного тока	Погрешность:		
ле	мерения пектротехнических и агнитных величин;		(-11) нА (-100100) нА (-11) мкА (-1010) мкА (-100100) мкА (-220220) мкА	ПГ ±0,07 %, отн. ПГ ±0,03 %, отн. ПГ ±0,007 %, отн. ПГ ±0,007 %, отн. ПГ ±0,007 %, отн. ПГ ±0,004 %, отн.		
			(-2.22.2) MA (-2222) MA (-220220) MA	$\Pi\Gamma$ ±0,0035%, отн. $\Pi\Gamma$ ±0,0035%, отн. $\Pi\Gamma$ ±0,0045%, отн.		

			Метрологические требования			
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
•		<u> </u>	(-2.22.2) A (-1111) A (-100100) A	$\Pi\Gamma$ ±0,008%, отн. $\Pi\Gamma$ ±0,005%, отн. $\Pi\Gamma$ ±0,015%, отн.		
			сила переменного тока (110) мкА 1 Гц30 кГц	$\Pi\Gamma$ ±0,3%, отн.		
			(10100) MKA 1 Γη2 κΓη (210) κΓη (1030) κΓη (30100) κΓη	$\Pi\Gamma \pm 0.043$ %, отн. $\Pi\Gamma \pm 0.075$ %, отн. $\Pi\Gamma \pm 0.10$ %, отн. $\Pi\Gamma \pm 0.55$ %, отн.		
			100 mkA1 mA 1 Γц1 κΓц (110) κΓц (1030) κΓц (30100) κΓц	ПГ ±0,0055 %, отн. ПГ ±0,0075 %, отн. ПГ ±0,0075 %, отн. ПГ ±0,015 %, отн.		
			(110) MA 10 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ (30100) κΓ μ	$\Pi\Gamma \pm 0,0026$ %, отн.		
			(10100) MA 10 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ (30100) κΓ μ	$\Pi\Gamma \pm 0,0026$ %, отн.		
			100 mA1 A 10 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ (30100) κΓ μ	$\Pi\Gamma \pm 0,0027$ %, отн. $\Pi\Gamma \pm 0,0028$ %, отн. $\Pi\Gamma \pm 0,0028$ %, отн. $\Pi\Gamma \pm 0,0031$ %, отн.		
			(30100) κΓ μ 100 мА1 Α 10 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ	$\Pi\Gamma \pm 0,0026$ %, отн. $\Pi\Gamma \pm 0,0027$ %, отн. $\Pi\Gamma \pm 0,0028$ %, отн. $\Pi\Gamma \pm 0,0028$ %, отн.		

Ν П/П		Тип (группа) средств измерений	Метрологические требования		
	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
		<u> </u>	10 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ (30100) κΓ μ	$\Pi\Gamma$ ±0,0037 %, отн. $\Pi\Gamma$ ±0,006 %, отн. $\Pi\Gamma$ ±0,0061 %, отн. $\Pi\Gamma$ ±0,0092 %, отн.	
			(10100) A 10 Γ μ1 κΓ μ (110) κΓ μ (1030) κΓ μ (30100) κΓ μ	$\Pi\Gamma \pm 0,0065$ %, отн. $\Pi\Gamma \pm 0,009$ %, отн. $\Pi\Gamma \pm 0,0098$ %, отн. $\Pi\Gamma \pm 0,0174$ %, отн.;	
			<u> </u>	1 1	
2.18.	Измерения электротехнических и магнитных величин;	Клещи электроизмерительн ые;	(-1100 В1100) В 100 мВ1100 В	Погрешность: $ \Pi\Gamma \pm 0.01 \text{ %, отн.} \\ \Pi\Gamma \pm 0.05 \text{ % отн.} $	-
			10 Гц20 кГц 0,1 Ом0,4 ГОм (-60006000) А 1 мА6000 А	$\Pi\Gamma \pm 0.05$ % отн. $\Pi\Gamma \pm 0.5$ % отн. $\Pi\Gamma \pm 0.5$ % отн. $\Pi\Gamma \pm 0.5$ % отн.	
			10 Гц30 кГц 10 Гц40 МГц	$\Pi\Gamma$ ± 0.01 % отн. ;	
		Измерители		Погрешность:	-
2.19.	Измерения		(01000) B	$\Pi\Gamma \pm 0.2$ % oth.	
2.19.	Измерения электротехнических и магнитных величин;	параметров электрических	(4070) Гц		
2.19.	электротехнических и			$\Pi\Gamma \pm 1$ % отн. $\Pi\Gamma \pm 5$ % отн.	
2.19.	электротехнических и	электрических	(4070) Гц R изоляции 100 кОм1,9 ТОм		

		Тип (группа) средств измерений	Метрологические требования			
Ν П/П	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
2.20.	Измерения электротехнических и магнитных величин;	Источники питания постоянного тока;	(-3535) κB (-3030) A (-300300) A (-10001000) A (015) κBτ	Погрешность: $\Pi\Gamma \pm 0.01$ %, отн. $\Pi\Gamma \pm 0.01$ %, отн. $\Pi\Gamma \pm 0.02$ %, отн. $\Pi\Gamma \pm 0.04$ %, отн.;	-	
2.21.	Измерения электротехнических и магнитных величин;	Источники питания переменного тока;	10 мВ25 кВ (0100) А (012) кВт (40500) Гц	Погрешность: $\Pi\Gamma \pm 0,5\%$, отн. $\Pi\Gamma \pm 0,5\%$, отн. $\Pi\Gamma \pm 1,0\%$, отн.;	-	
2.22.	Измерения электротехнических и магнитных величин;	Нагрузки электронные постоянного тока;	1 мВ1000 В 1 мА30 А (-300300) А (-10001000) А (015) кВт	Погрешность: ПГ ±0,01 %, отн. ПГ ±0,01 %, отн. ПГ ±0,02 %, отн. ПГ ±0,04 %, отн. ПГ ±0,1 %, отн.;	-	
2.23.	Измерения электротехнических и магнитных величин;	Нагрузки электронные переменного тока;	10 мВ1000 В (0300) А (03) κВт (40500) Γц	Погрешность: $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.5$ %, отн.;	-	
2.24.	Измерения электротехнических и магнитных величин;	Установки проверки электробезопасност и;	(035) κB (025) κB (4070) Γц	Погрешность: ПГ $\pm 0,5$ %, отн. ПГ $\pm 0,5$ %, отн.	-	

RA.RU.312058

		Тип (группа) Измерения средств измерений	Метрологические требования		
Ν П/П	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(0,40) MA 0,1 MOM1,9 TOM (1,929) TOM	ПГ ±0,1 %, отн. ПГ ±0,5 %, отн. ПГ ±5 %, отн.;	
	Измерения электротехнических и магнитных величин;	Измерители электрического сопротивления;	100 MKOM (100500) MKOM 500 MKOM1MOM 1MOM0,1 OM (0,110) OM 10 OM1 KOM (1 19) KOM (19 100) KOM 100 KOM1 MOM (110) MOM (1019) MOM (1019) MOM (19100) MOM (2 ΓΟΜ1,9 TOM 1,929 TOM	Погрешность: ПГ ±0,025 %, отн. ПГ ±0,02 %, отн. ПГ ±0,01 %, отн. ПГ ±0,0003 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0009 %, отн. ПГ ±0,001 %, отн. ПГ ±0,001 %, отн. ПГ ±0,01 %, отн. ПГ ±1 %, отн. ПГ ±1 %, отн. ПГ ±5 %, отн.	
	Измерения электрических и магнитных величин;	Измерители RLC, измерители импеданса;	сопротивление переменному току 0.01 Ом100 МОм (010) кГц 0.01 Ом100 кОм (10100) кГц 0.01 Ом10 кОм (0,11) МГц 0.01 Ом10 кОм (110) МГц индуктивность 0,010,03 мкГн	Погрешность: $\Pi\Gamma \pm 0.03$ %, отн. $\Pi\Gamma \pm 0.05$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.3$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн.	

N П/П		Тип (группа) средств измерений	Метролог		
	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(13000) кГц 0,030,3 мкГн (13000) кГц	$\Pi\Gamma$ ±0,4 %, отн.	
			0,3 мкГн100 мГн (13000) кГц	ПГ ±0,2 %, отн.	
			(13000) кг ц 100 мГн16 кГн (0,0810) кГц	$\Pi\Gamma$ $\pm 0,01$ %, отн.	
			электрическая емкость 100 пФ1000 пФ 1 кГц1 МГц	$\Pi\Gamma$ $\pm 0,1$ %, отн.	
			1 кг ц1 кгг ц 1 кФ100 мФ 40 Гц100 кГц	ПГ ± 0.05 %, отн.;	
2.27.	Измерения	Калибраторы		Погрешность:	
2.21.	электротехнических и	промышленных	(-10001000) B	$\Pi\Gamma \pm 0.02$ %, oth.	•
	магнитных величин;	процессов;	1 мВ1000 В (40500) Гц	ΠΓ ±0,5 %, отн.	
			0,1 Ом40 МОм	$\Pi\Gamma \pm 0,1$ %, oth.	
			(-400400) мА 1 мА400 мА	$\Pi\Gamma \pm 0.02$ %, отн. $\Pi\Gamma \pm 0.5$ %, отн.	
			(40500) Гц		
			10 Γц100 κΓц (-2502320) °C	ПГ ±0,1 %, отн. ПГ ±0,7 °С, отн.;	
			(2502520)	111 -0,7 C, 01111,	
2.28.	Измерения	Анализаторы		Погрешность:	
	электротехнических и магнитных величин;	качества электрической	(01000) В (4070) Гц	ΠΓ ±0.05 %, отн.	
	магинных величин,	энергии;	Тпровала (0,0160) с	$\Pi\Gamma$ ±3 мс, отн.	
			U провала (10100) %	$\Pi\Gamma \pm 1.0$ %, oth.;	

			Метрологическ	кие требования	
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
2.29.	Измерения электротехнических и магнитных величин;	Ваттметры переменного тока;	1 мВ1000 В 1 мкА100 А 0100 кВт Соѕ φ (0,0011,0) 10 Γц10 кГц	Погрешность: $\Pi\Gamma \pm 0,01$ %, отн. $\Pi\Gamma \pm 0,01$ %, отн. $\Pi\Gamma \pm 0,3$ %, отн. $\Pi\Gamma \pm 1,0$ %, отн.;	-
2.30.	Измерения электротехнических и магнитных величин;	Калибраторы универсальные. Установки поверочные для поверки вольтметров. Усилители напряжения и тока для калибраторов и установок поверочных.;	10 В 0,1 В; 1 В; 100 В; 1000 В 0,01018 В напряжение постоянного тока (-220220) мВ (-2,22,2) В (-2222) В (-220220) В (-11001100) В	Погрешность: $\Pi\Gamma \pm 0,00018~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,00028~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,0003~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,00075~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,0005~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,00035~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,0005~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,0005~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,00065~\%, \text{ отн.} \\ \Pi\Gamma \pm 0,00$	фиксированные напряжения
			напряжение переменного тока 1 мкВ2,2 мВ (120) Гц (2040) Гц 40 Гц20 кГц (2050) кГц (50100) кГц (100300) кГц (300500) кГц (300500) кГц	$\Pi\Gamma \pm 0,024~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,009~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,008~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,02~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,05~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,105~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,14~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,27~\%, \text{ отн.}$ $\Pi\Gamma \pm 0,27~\%, \text{ отн.}$	
			(2,222) MB (120) Γ μ (2040) Γ μ (40100) Γ μ (0,11) κΓ μ (110) κΓ μ	$\Pi\Gamma \pm 0,024$ %, отн. $\Pi\Gamma \pm 0,009$ %, отн. $\Pi\Gamma \pm 0,008$ %, отн.	

			Метролог	ические требования	
1/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(1020) кГц	$\Pi\Gamma \pm 0{,}008$ %, отн.	
			(2050) кГц	$\Pi\Gamma \pm 0,02\%$, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0.05$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0{,}105 \%$, oth.	
			(300500) кГц	$\Pi\Gamma \pm 0.14$ %, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0,27$ %, отн.	
			1 МГц	$\Pi\Gamma \pm 0,27$ %, отн.	
			(22220) мВ		
			(120) Гц	$\Pi\Gamma \pm 0.09$ %, oth.	
			(2040) Гц	$\Pi\Gamma \pm 0.03$ %, отн.	
			(40100) Гц	$\Pi\Gamma \pm 0,006$ %, oth.	
			(0,11) кГц	Π Γ ±0,006 %, oth.	
			(110) кГц	ΠΓ ±0,006 %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0{,}006$ %, отн.	
			(2050) кГц	ΠΓ ±0,008 %, отн.	
			(50100) кГц	$\Pi\Gamma \pm 0.011$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0.03$ %, oth.	
			(300500) кГц	ΠΓ ±0,075 %, отн.	
			(0,51) МГц	ΠΓ ±0,15 %, отн.	
			1 МГц	$\Pi\Gamma \pm 0.25$ %, отн.	
			(220700) мВ		
			(120) Гц	$\Pi\Gamma \pm 0.03\%$, oth.	
			(2040) Гц	ПГ ±0,0065 %, отн.	
			(40100) Гц	ПГ ±0,003 %, отн.	
			(0,11) кГц	ПГ ±0,003 %, отн.	
			(110) κΓιι (1020) κΓιι	ПГ ±0,0025 %, отн.	
			(1020) кГц (2050) кГц	$\Pi\Gamma \pm 0,0045$ %, отн. $\Pi\Gamma \pm 0,0055$ %, отн.	
			(2030) кі ц (50100) кГц	ПГ ±0,0035 %, ОТН. ПГ ±0,0075 %, ОТН.	
			(30100) кГ ц (100300) кГц	ПГ ±0,0073 %, ОТН. ПГ ±0,015 %, ОТН.	
			(100500) кГ ц (300500) кГц	ПГ ±0,013 %, отн. ПГ ±0,02 %, отн.	
			(300300) кг ц (0,51) МГц	ΠΓ ±0,043 %, OTH.	
			(1 МГц	ПГ ±0,055 %, отн.	
			(0,72,2) B		
			(0,72,2) Β (120) Γι	ΠΓ ±0.06 %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0.015$ %, oth.	

			Метролог	ические требования	
ι п/п	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
·		<u>·</u>	(40100) Гц	ПГ ±0,003 %, отн.	
			(0,11) кГц	ΠΓ ±0,003 %, отн.	
			(110) кГц	ΠΓ ±0,0025 %, отн.	
			(1020) кГц	$\Pi\Gamma \pm 0.0045$ %, oth.	
			(2050) κΓιι (50100) κΓιι	$\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн.	
			(50100) кГц (100300) кГц	ПГ ±0,0073 %, ОТН. ПГ ±0,015 %, ОТН.	
			(300500) кГц	$\Pi\Gamma \pm 0.013 \%$, oth. $\Pi\Gamma \pm 0.02 \%$, oth.	
			(0,51) МГц	$\Pi\Gamma \pm 0.045$ %, oth.	
			1 МГц	$\Pi\Gamma \pm 0,053$ %, отн.	
			(2,27) B		
			(120) Гц	ΠΓ ±0.03 %, отн.	
			(2040) Гц	$\Pi\Gamma \pm 0,0065$ %, oth.	
			(40100) Гц	$\Pi\Gamma \pm 0.003$ %, oth.	
			(0,11) кГц	ПГ ±0,003 %, отн.	
			(110) кГц (1020) кГц	$\Pi\Gamma \pm 0,0025$ %, отн. $\Pi\Gamma \pm 0,0045$ %, отн.	
			(2050) кГц	$\Pi\Gamma \pm 0,0055$ %, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0,0075$ %, oth.	
			(100300) кГц	Π Γ ±0,015 %, oth.	
			(300500) кГц	ΠΓ ±0.02 %, отн.	
			(0,51) МГц	ΠΓ ±0,046 %, отн.	
			1 МГц	$\Pi\Gamma \pm 0,059$ %, отн.	
			(722) B		
			(120) Гц	ΠΓ ±0,06 %, отн.	
			(2040) Гц (40100) Гц	ПГ ±0,015 %, отн. ПГ ±0,003 %, отн.	
			(40100) Г Ц (0,11) кГц	$\Pi\Gamma \pm 0,003\%$, oth. $\Pi\Gamma \pm 0,003\%$, oth.	
			(0,11) κΓμ (110) κΓμ	$\Pi\Gamma \pm 0,0025$ %, oth. $\Pi\Gamma \pm 0,0025$ %, oth.	
			(1020) кГц	$\Pi\Gamma \pm 0,0045$ %, oth.	
			(2050) кГц	$\Pi\Gamma \pm 0,0055$ %, oth.	
			(50100) кГц	$\Pi\Gamma \pm 0{,}0075$ %, oth.	
			(100300) кГц	$\Pi\Gamma \pm 0.015$ %, oth.	
			300 кГц	$\Pi\Gamma$ ±0,02 %, отн.	
			(2270) B		
			(120) Гц	$\Pi\Gamma \pm 0.03$ %, oth.	

			Метрологические требования			
1/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
			(2040) Гц	ПГ ±0,007 %, отн.		
			(40100) Гц	ΠΓ ±0,004 %, отн.		
			(0,11) кГц	$\Pi\Gamma \pm 0,004$ %, oth.		
			(110) кГц	$\Pi\Gamma \pm 0{,}004$ %, oth.		
			(1020) кГц	$\Pi\Gamma \pm 0{,}0045$ %, oth.		
			(2050) кГц	ΠΓ ±0,0055 %, отн.		
			(50100) кГц	$\Pi\Gamma \pm 0,0075$ %, oth.		
			100 кГц	$\Pi\Gamma \pm 0.015$ %, отн.		
			(70220) B			
			(120) Гц	$\Pi\Gamma \pm 0.06$ %, отн.		
			(2040) Гц	Π Γ ±0,015 %, отн.		
			(40100) Гц	$\Pi\Gamma \pm 0{,}003$ %, oth.		
			(0,11) кГц	$\Pi\Gamma \pm 0.003$ %, oth.		
			(110) кГц	ПГ ±0,003 %, отн.		
			(1020) кГц (2050) кГц	$\Pi\Gamma \pm 0.0045$ %, отн. $\Pi\Gamma \pm 0.0055$ %, отн.		
			(2030) κΓ μ (50100) κΓ μ	$\Pi\Gamma \pm 0,0055\%$, oth. $\Pi\Gamma \pm 0,0075\%$, oth.		
			100 кГц	ПГ ±0,015 %, отн.		
			2201000 B			
			(1100) Гц	$\Pi\Gamma \pm 0,006$ %, oth.		
			(0,11) кГц	$\Pi\Gamma \pm 0{,}003$ %, oth.		
			(110) кГц	$\Pi\Gamma \pm 0{,}0027$ %, oth.		
			(1020) кГц	$\Pi\Gamma \pm 0{,}0045$ %, oth.		
			(2050) кГц	$\Pi\Gamma \pm 0{,}0055$ %, oth.		
			(50100) кГц	$\Pi\Gamma \pm 0,0075$ %, oth.		
			100 кГц	$\Pi\Gamma \pm 0.015$ %, отн.		
			сила постоянного тока			
			(-1010) нА	ΠΓ ±0.07 %, отн.		
			(-100100) нА	ΠΓ ±0.03 %, отн.		
			(-11) мкА	$\Pi\Gamma \pm 0.007$ %, oth.		
			(-1010) MKA	ΠΓ ±0,007 %, отн.		
			(-100100) MKA	ПГ ±0,007 %, отн.		
			(-220220) MKA	ΠΓ ±0,004%, отн.		
			(-2,22.2) MA (-2222) MA	$\Pi\Gamma \pm 0.0035\%$, отн. $\Pi\Gamma \pm 0.0035\%$, отн.		
			(-∠∠∠∠) MA	111 ±0,0033/0, 01H.		

			Метролог	гические требования	
ν п/п	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(-2,22.2) A (-1111) A -(100100) A	$\Pi\Gamma$ ±0,008%, отн. $\Pi\Gamma$ ±0,005%, отн. $\Pi\Gamma$ ±0,015%, отн.	
			сила переменного тока (110) мкА 1 Гц30 кГц (10100) мкА	$\Pi\Gamma$ $\pm0,3\%$, отн.	
			1 Γц2 κΓц (210) κΓц (1030) κΓц (30100) κΓц	$\Pi\Gamma \pm 0,043$ %, отн. $\Pi\Gamma \pm 0,075$ %, отн. $\Pi\Gamma \pm 0,10$ %, отн. $\Pi\Gamma \pm 0,55$ %, отн.	
			100 мкА1 мА 1 Γц1 кГц (110) кГц (1030) кГц (30100) кГц	$\Pi\Gamma \pm 0,0055$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,0075$ %, отн. $\Pi\Gamma \pm 0,015$ %, отн.	
			(110) MA 1 Γη1 κΓη (110) κΓη (1030) κΓη (30100) κΓη	$\Pi\Gamma \pm 0,0026$ %, отн.	
			(10100) MA 1 Γι1 κΓι (110) κΓι (1030) κΓι (30100) κΓι	$\Pi\Gamma \pm 0,0026$ %, отн.	
			100 mA1 A 1 Γι1 κΓι (110) κΓι (1030) κΓι (30100) κΓι	$\Pi\Gamma \pm 0,0027$ %, отн. $\Pi\Gamma \pm 0,0028$ %, отн. $\Pi\Gamma \pm 0,0028$ %, отн. $\Pi\Gamma \pm 0,0031$ %, отн.	

			Метролог	ические требования	Примечание
Ν Π/Π	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	
			(110) A		
			1 Гц1 кГц	$\Pi\Gamma \pm 0{,}0037$ %, oth.	
			(110) кГц	ΠΓ ±0,006 %, oth.	
			(1030) кГц	$\Pi\Gamma \pm 0{,}0061$ %, oth.	
			(30100) кГц	$\Pi\Gamma \pm 0,0092$ %, отн.	
			(10100) A		
			10 Гц1 кГц	ΠΓ ±0,0065 %, отн.	
			(110) кГц	ΠΓ ±0,009 %, отн.	
			(1030) кГц	$\Pi\Gamma \pm 0,0098$ %, oth.	
			(30100) кГц	$\Pi\Gamma \pm 0.0174$ %, отн.	
			электрическое сопротивление		
			100 мкОм	ΠΓ ±0,025 %, отн.	
			(100500) мкОм	$\Pi\Gamma \pm 0.02$ %, oth.	
			500 мкОм1мОм	$\Pi\Gamma \pm 0.012$, oth.	
			1 MOM0,1 OM	ПГ ±0,0003 %, отн.	
			(0,110) OM	ПГ ±0,0008 %, отн.	
			10 Om1 kOm	ПГ ±0,0006 %, отн.	
			(1 кОм 19) кОм	ПГ ±0,0004 %, отн.	
			(19 KOM 100) KOM	ПГ ±0,0006 %, отн.	
			100 кОм1 МОм (110) МОм	$\Pi\Gamma \pm 0,0008$ %, отн. $\Pi\Gamma \pm 0,0009$ %, отн.	
			(110) MOM (1019) MOM	ПГ ±0,0009 %, ОТН. ПГ ±0,001 %, ОТН.	
			(1019) МОМ (19100) МОМ	ПГ ±0,001 %, ОТН. ПГ ±0,005 %, ОТН.	
			(13100) MOM (0,11) ΓΟΜ	ПГ ±0,005 %, ОТН. ПГ ±0,01 %, ОТН.	
			2 ГОм1,9 ТОм	ΠΓ ±1 %, OTH.	
			(1,929) ТОМ	ΠΓ ±5 %, отн.	
			электрическая емкость		
			(104000) пФ	$\Pi\Gamma \pm 0.02$ %, oth.	
			(104000) ПФ (0,011) мкФ	$\Pi\Gamma \pm 0.02$ %, oth. $\Pi\Gamma \pm 0.03$ %, oth.	
			(132,9999) мкФ	$\Pi\Gamma \pm 0.03$ %, oth. $\Pi\Gamma \pm 0.4$ %, oth.	
			33 мкФ10,9999 мФ	ПГ ±0,45 %, отн.	
			(1132,9999) мФ	$\Pi\Gamma \pm 0.75$ %, oth.	
			(33110) MΦ	ΠΓ ±1,1 %, отн.	
			индуктивность		
			(15) мкГн	ΠΓ ±1,5 %, отн.	

			Метрологические требования			
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
	'		(550) мкГн (0,0501000) мГн	$ΠΓ \pm 0.15$ %, oth. $ΠΓ \pm 0.05$ %, oth.		
			частота 0,001 Гц200 МГц	$\Pi\Gamma \pm 1\cdot 10^{-7}$, отн.		
			температура (термо ЭДС или термосопротивление) (-2502320) °C	ΠΓ ±0,7 °C;		
	Измерения электротехнических и магнитных величин;	Меры электрического сопротивления однозначные;	сопротивление постоянному току 100 мкОм (100500) мкОм 500 мкОм1мОм 1мОм0,1 Ом (0,110) Ом 10 Ом1 кОм (1 19) кОм (19 100) кОм 100 кОм1 МОм (110) МОм (1019) МОм (1019) МОм (1019) МОм (19100) МОм (2020) ГОм (20200) ГОм 200 ГОм2 ТОм (220) ТОм (220) ТОм (20200) ТОм	Погрешность: ПГ ±0,025 %, отн. ПГ ±0,02 %, отн. ПГ ±0,01 %, отн. ПГ ±0,003 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,001 %, отн. ПГ ±0,001 %, отн. ПГ ±0,001 %, отн. ПГ ±0,015 %, отн. ПГ ±0,015 %, отн. ПГ ±0,04 %, отн. ПГ ±0,04 %, отн. ПГ ±0,04 %, отн. ПГ ±0,1 %, отн. ПГ ±0,25 %, отн. ПГ ±0,4 %, отн.		
			сопротивление переменному току 0.01 Ом100 МОм (010 кГп)	$\Pi\Gamma$ ±0.03 %, oth.		
			0.01 Ом100 кОм (10100 кГц) 0.01 Ом10 кОм	$\Pi\Gamma \pm 0.05$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн.		

		Тип (группа) средств измерений	Метрологические требования		
Ν П/П	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(0,11 МГц) 0.01 Ом10 кОм (110 МГц)	$\Pi\Gamma \pm 0,3$ %, отн.;	
2.32.	Измерения электротехнических и магнитных величин;	Меры электрического сопротивления многозначные;	100 MKOM (100500) MKOM 500 MKOM1MOM 1MOM0,1 OM (0,110) OM 10 OM1 KOM (1 19) KOM (19 100) KOM 100 KOM1 MOM (110) MOM (1019) MOM (1019) MOM (19100) MOM (2020) FOM (2020) FOM (2020) TOM (220) TOM (2020) TOM (2020) TOM	Погрешность: ПГ ±0,025 %, отн. ПГ ±0,01 %, отн. ПГ ±0,0003 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0006 %, отн. ПГ ±0,0008 %, отн. ПГ ±0,0009 %, отн. ПГ ±0,0009 %, отн. ПГ ±0,001 %, отн. ПГ ±0,01 %, отн. ПГ ±0,01 %, отн. ПГ ±0,01 %, отн. ПГ ±0,04 %, отн. ПГ ±0,04 %, отн. ПГ ±0,06 %, отн. ПГ ±0,1 %, отн. ПГ ±0,25 %, отн. ПГ ±0,4 %, отн.	
2.33.	Измерения электротехнических и магнитных величин;	Измерительные и электронные шунты постоянного тока;	(0,000110) кОм (030) A (30300) A (3001000) A	Погрешность: $\Pi\Gamma \pm 0,01$ %, отн. $\Pi\Gamma \pm 0,02$ %, отн. $\Pi\Gamma \pm 0,02$ %, отн.;	

		Тип (группа) средств измерений	Метрологические требования		
Ν П/П	Измерения		диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
2.34.	Измерения электротехнических и магнитных величин;	Измерительные и электронные шунты переменного тока;	(0,000110) кОм; 20 Гц100 кГц (030) А (30300) А	Погрешность: ПГ ±0,01 %, отн. ПГ ±0,01 %, отн.;	-
2.35.	Измерения электротехнических и магнитных величин;	Меры электрической емкости;	(1001000) пФ 1 кГц1 МГц 1 нФ1 мкФ 40 Гц100 кГц 1 мкФ1 мФ 20 Гц1 кГц	Погрешность: ПГ ±0,1 %, отн. ПГ ±0,05 %, отн. ПГ ±0,3 %, отн.;	-
2.36.	Измерения электротехнических и магнитных величин;	Меры индуктивности;	(0,010,03) мкГн (13000) кГц (0,030,3) мкГн (13000) кГц 0,3 мкГн100 мГн (13000) кГц 100 мГн1 Гн (0,0810) кГц (110) Гн (0,021) кГц	Погрешность: ПГ $\pm 0,1$ %, отн. ПГ $\pm 0,4$ %, отн. ПГ $\pm 0,2$ %, отн. ПГ $\pm 0,01$ %, отн. ПГ $\pm 0,1$ %, отн.;	-
2.37.	Радиотехнические и радиоэлектронные измерения;	Вольтметры электронные переменного напряжения;	0,03 мВ3 В 10 Гц100 МГц 0,03 мВ3 В 10 Гц2000 МГц (с нагрузкой 50 Ом)	Погрешность: ПГ $\pm 0,12$ %, отн. ПГ $\pm 0,12$ %, отн.;	-

			Метрологические требования			
Ν Π/Π	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание	
2.38.	Радиотехнические и радиоэлектронные измерения;	Генераторы сигналов низкочастотные;	1 мкГц10 МГц 1 мВ195 В Кг (0,0015100) %	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн. $\Pi\Gamma \pm 0,5$ %, отн.;	-	
2.39.	Радиотехнические и радиоэлектронные измерения;	Генераторы сигналов высокочастотные;	1 мкГц67 ГГц (-140+44) дБм АМ (0100) % ЧМ (040) МГц ФМ (0500) рад	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн. $\Pi\Gamma \pm 0.4$ дБм, абс. $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.3$ %, отн.;		
2.40.	Радиотехнические и радиоэлектронные измерения;	Генераторы сигналов сложной формы;	1 мкГц67 ГГц 1 мВ40 В АМ (0100) % ЧМ (040) МГц ФМ (0500) рад тфр 10 пс1000 с	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн. $\Pi\Gamma \pm 0.5$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.1$ %, отн. $\Pi\Gamma \pm 0.3$ %, отн. $\Pi\Gamma \pm 0.3$ %, отн.;	-	
2.41.	Радиотехнические и радиоэлектронные измерения;	Генераторы испытательных импульсов;	25 πc1000 c (060) B τφρ 10 πc1000 c	Погрешность: $\Pi\Gamma \pm 5 \cdot 10^{-12}$, отн. $\Pi\Gamma \pm 2$ %, отн.;	-	
2.42.	Радиотехнические и радиоэлектронные измерения;	Генераторы импульсов;	25 пс1000 с (060) В	Погрешность: ПГ $\pm 5\cdot 10^{-12}$, отн. ПГ ± 2 %, отн.;	-	

Ν П/П	Измерения	Тип (группа) средств измерений	Метрологические требования		
			диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			тфр 10 пс1000 с		
2.43.	Радиотехнические и радиоэлектронные измерения;	Осциллографы универсальные, цифровые, запоминающие, модульные ;	Полоса пропускания (067) ГГц 0,2 мВ600 В 0,01 пс10000 с	Погрешность: ПГ ± 0.05 %, отн. ПГ $\pm 1\cdot 10^{-8}$, отн.;	-
2.44.	Радиотехнические и радиоэлектронные измерения;	Анализаторы спектра;	диапазон частот 0,001 Гц 67 ГГц диапазон измеряемых уровней (-140+44) дБм 1 мГц100 кГц 100 кГц128 МГц (128300) МГц 300 МГц2 ГГц (212,4) ГГц (12,418) ГГц (1826,5) ГГц (26,550) ГГц (5067) ГГц	Погрешность: ПП ±5·10 -10, отн. ПП ±0,06 дБм, абс. ПП ±0,1 дБм, абс. ПП ±0,14 дБм, абс. ПП ±0,43 дБм, абс. ПП ±0,45 дБм, абс. ПП ±0,51 дБм, абс. ПП ±0,51 дБм, абс. ПП ±0,63 дБм, абс. ПП ±0,9 дБм, абс. ПП ±1,2 дБм, абс.	-
2.45.	Радиотехнические и радиоэлектронные измерения;	Калибраторы осциллографов. Установки измерительные для поверки осциллографов.;	Напряжение постоянного тока 1 мВ200 В Синусоидальный режим 5 мВп-п10 Вп-п 0,1 Гц1 МГц	Погрешность: $\Pi\Gamma \pm 0{,}0005~\%, \text{ отн.}$ $\Pi\Gamma \pm 0{,}5~\%, \text{ отн.}$	-

Ν П/П	Измерения	Тип (группа) средств измерений	Метрологические требования		
			диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
			(0,14110) Вп-п	$\Pi\Gamma \pm 0,5$ %, отн.	
			1 МГц2 ГГц 5 мВп-п10 Вп-п	ПΓ ±3 %, отн.	
			(0.0016,4) ГГц 5 мВп-п10 Вп-п (6,440) ГГц	$\Pi\Gamma\pm5$ %, oth.	
			Импульсный режим 40 мкВ200 В 10 Гц100 кГц	$\Pi\Gamma$ $\pm0,1$ %, отн.	
			Период 0,5 нс50 с тфр 10 пс1000 с	Π Γ ±5·10 ⁻¹² , oth.;	
	1		1		
2.46.	Радиотехнические и	Измерители	диапазон частот	Погрешность:	-
	радиоэлектронные	комплексных коэффициентов	9 кГц67 ГГц	$\Pi\Gamma \pm 5\cdot 10^{-10}$, отн.	
		комплексных коэффициентов передач;	коэффициент передачи (-100+10) дБм (010) ГГц (1018) ГГц (1826,5) ГГц	$\Pi\Gamma \pm 0.1$ дБ, абс. $\Pi\Gamma \pm 0.16$ дБ, абс. $\Pi\Gamma \pm 0.18$ дБ, абс.	
	радиоэлектронные	коэффициентов	коэффициент передачи (-100+10) дБм (010) ГГц (1018) ГГц	ПГ ±0,1 дБ, абс. ПГ ±0,16 дБ, абс.	
	радиоэлектронные	коэффициентов	коэффициент передачи (-100+10) дБм (010) ГГц (1018) ГГц (1826,5) ГГц (26,550) ГГц	ПГ ±0,1 дБ, абс. ПГ ±0,16 дБ, абс. ПГ ±0,18 дБ, абс. ПГ ±0,2 дБ, абс.	
	радиоэлектронные измерения;	коэффициентов передач;	коэффициент передачи (-100+10) дБм (010) ГГц (1018) ГГц (1826,5) ГГц (26,550) ГГц (5067) ГГц коэффициент отражения Котр (01)	$\Pi\Gamma \pm 0,1$ дБ, абс. $\Pi\Gamma \pm 0,16$ дБ, абс. $\Pi\Gamma \pm 0,18$ дБ, абс. $\Pi\Gamma \pm 0,2$ дБ, абс. $\Pi\Gamma \pm 0,2$ дБ, абс. $\Pi\Gamma \pm 0,25$ дБ, абс. $\Pi\Gamma \pm 0,001$, абс.;	
2.47.	радиоэлектронные измерения; Радиотехнические и радиоэлектронные	коэффициентов передач; Измерители нелинейных	коэффициент передачи (-100+10) дБм (010) ГГц (1018) ГГц (1826,5) ГГц (26,550) ГГц (5067) ГГц коэффициент отражения Котр (01)	$\Pi\Gamma \pm 0.1$ дБ, абс. $\Pi\Gamma \pm 0.16$ дБ, абс. $\Pi\Gamma \pm 0.18$ дБ, абс. $\Pi\Gamma \pm 0.2$ дБ, абс. $\Pi\Gamma \pm 0.2$ дБ, абс. $\Pi\Gamma \pm 0.25$ дБ, абс. $\Pi\Gamma \pm 0.001$, абс.;	-
	радиоэлектронные измерения;	коэффициентов передач;	коэффициент передачи (-100+10) дБм (010) ГГц (1018) ГГц (1826,5) ГГц (26,550) ГГц (5067) ГГц коэффициент отражения Котр (01)	ПΓ ±0,1 дБ, абс. ПГ ±0,16 дБ, абс. ПГ ±0,18 дБ, абс. ПГ ±0,2 дБ, абс. ПГ ±0,25 дБ, абс. ПГ ±0,001, абс.;	-

			Метрологические требования		
Ν П/П	Измерения	Тип (группа) средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
	<u>'</u>	<u>'</u>	(10200) Γ _Ц (0,220) κΓ _Ц (20200) κΓ _Ц (0,001100) %; 0,10 мВ10 В	$\Pi\Gamma \pm 0.01$ %, отн. $\Pi\Gamma \pm 0.006$ %, отн. $\Pi\Gamma \pm 0.01$ %, отн.;	
2.48.	Радиотехнические и радиоэлектронные измерения;	Аттенюаторы;	(070) дБ (0 Гц67) ГГц	Погрешность: ПГ ±0,2 дБ, абс.;	-
2.49.	Радиотехнические и радиоэлектронные измерения;	Усилители переменного напряжения измерительные;	1 мГц2 ГГц (212,4) ГГц (12,418) ГГц (1826,5) ГГц (26,550) ГГц (5067) ГГц (0140) дБ; 0 Гц67 ГГц	Погрешность: $\Pi\Gamma \pm 0,43$ дБм, абс. $\Pi\Gamma \pm 0,45$ дБм, абс. $\Pi\Gamma \pm 0,51$ дБм, абс. $\Pi\Gamma \pm 0,63$ дБм, абс. $\Pi\Gamma \pm 0,9$ дБм, абс. $\Pi\Gamma \pm 1,2$ дБм, абс.;	-
2.50.	Радиотехнические и радиоэлектронные измерения;	Измерители модуляции, девиации частоты;	частота несущей (0,014000) МГц коэффициент АМ (0,1100) % девиация ЧМ 10 Гц4,8 МГц	Погрешность: ПГ $\pm 0,06$ %, отн. ПГ $\pm 0,06$ %, отн.;	диапазон частот модулирующего сигнала 1 Гц300 кГц
2.51.	Радиотехнические и радиоэлектронные измерения;	Ваттметры поглощаемой и проходящей	(0100) Вт (010) МГц (10100) МГц	Погрешность: ПГ ±0,5 %, отн. ПГ ±1,4 %, отн.	-

Ν Π/Π	Измерения	Тип (группа) средств измерений	Метрологические требования		
			диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	Примечание
		мощности в коаксиальных	(0,18) ГГц (812) ГГц	$\Pi\Gamma \pm 1,6$ %, отн. $\Pi\Gamma \pm 2,2$ %, отн.	
		трактах;	(1218) ΓΓ _Ψ (1826) ΓΓ _Ψ (2637,5) ΓΓ _Ψ (37,550) ΓΓ _Ψ	$\Pi\Gamma \pm 2,8$ %, отн. $\Pi\Gamma \pm 3,6$ %, отн. $\Pi\Gamma \pm 4$ %, отн. $\Pi\Gamma \pm 5,4$ %, отн.;	

 Генеральный Директор АО "ПриСТ"
 Подписано электронной подписью
 Дедюхин А.А.

 должность уполномоченного лица
 подпись уполномоченного лица
 инициалы, фамилия уполномоченного лица